Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Vì \(\frac{x-4}{y-3}=\frac{4}{3}\Leftrightarrow\frac{x-4}{4}=\frac{y-3}{3}\) và \(x-y=5\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{x-4}{4}=\frac{y-3}{3}=\frac{\left(x-4\right)-\left(y-3\right)}{4-3}=\frac{x-4-y+3}{1}\)
\(=\left(x-y\right)+\left(3-4\right)=5+\left(-1\right)=5-1=4\)
\(\frac{x-4}{4}=4\Leftrightarrow x-4=4.4=16\Leftrightarrow x=16+4=20\)
\(\frac{y-3}{3}=4\Leftrightarrow y=4.3=12\Leftrightarrow y=12+3=15\) . Vậy \(x=20;y=15\)
Theo bài ra ta có
\(\frac{x-4}{y-3}=\frac{4}{3}\Leftrightarrow\frac{x-4}{4}=\frac{y-3}{3}\) và \(x-y=5\)
\(\Leftrightarrow\frac{x-4}{4}=\frac{y-3}{3}\Leftrightarrow\frac{x}{4}-\frac{4}{4}=\frac{y}{3}-\frac{3}{3}\)
\(\Leftrightarrow\frac{x}{4}-1=\frac{y}{3}-1\)
\(\Leftrightarrow\frac{x-y}{4-3}=5\)
tự thực hiện tiếp , nếu cssnf thì AD bài của VCM thì sẽ tốt hơn :)) toi thử cách khác thoi
\(\left|3-x\right|=x-5\)
\(\Rightarrow\orbr{\begin{cases}3-x=x-5\\3-x=5-x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-x-x=-5-3\\-x+x=5-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-2x=-8\\x\in\varnothing\end{cases}}\)
\(\Rightarrow x=4\)
vậy_
1) \(\left|3-x\right|=x-5\)
\(3x-x\ge0\text{ để: }x\ge0\Rightarrow x\ge0;\left|3x-x\right|=3x-x\)
\(3x-x< 0\text{ để: }x< 0\Rightarrow\left|3x-x\right|=-\left(3x-x\right)\)
\(\Rightarrow\orbr{\begin{cases}x< 0\\x\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-5\end{cases}}\)
=> Không có gtrị tmyk.
Bài 1:
\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
\(=\frac{1}{\frac{1}{2}}+3\) \(=2+3\) \(=5\)
Vậy B=5
Bài 2:
a) x3 - 36x = 0
=> x(x2-36)=0
=> x(x2+6x-6x-36)=0
=> x[x(x+6)-6(x+6) ]=0
=> x(x+6)(x-6)=0
\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)
Vậy x=0; x=-6; x=6
b) (x - y = 4 => x=4+y)
x−3y−2 =32
=>2(x-3) = 3(y-2)
=>2x-6= 3y-6
=>2x-3y=0
=>2(4+y)-3y=0
=>8+2y-3y=0
=>8-y=0
=>y=8 (thỏa mãn)
Do đó x=4+y=4+8=12 (thỏa mãn)
Vậy x=12 và y =8
B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4 1/5 - 1/8
B= 1/ 1/2 + 3
B= 2+3
B=5
B2:
a) x^3 - 36x = 0
x(x^2 - 36) = 0
=> x=0 hoặc x^2-36=0
=> x= 0 hoặc x^2=36
=> x=0 hoặc x= +- 6
\(\frac{x-2}{4}=\frac{-9}{2-x}\)
\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)
\(\Rightarrow\left(x-2\right)^2=36\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)
\(\frac{3}{x+2}=\frac{5}{2x+1}\)
\(\Rightarrow3\left(2x+1\right)=\left(x+2\right)5\)
\(\Rightarrow6x+3=5x+10\)
\(\Rightarrow6x-5x=10-3\)
\(\Rightarrow x=7\)
c;giống câu trên :v
Ta có:
\(\frac{3}{x}\)\(+\)\(\frac{y}{3}\)\(=\)\(\frac{5}{6}\)
\(\frac{y}{3}\)\(=\)\(\frac{5}{6}\)\(-\)\(\frac{3}{x}\)
\(2y=5-\)\(\frac{18}{x}\)
Vì x\(\in\)Z,y\(\in\)Z nên x\(\in\)Ư(18) và \(5-\)\(\frac{18}{x}\)là số chẵn,khi đó x là số chẵn
Vậy x\(\in\){-18;-6;-2;2;6;18}
\(\Rightarrow\)y\(\in\){3;4;7;-2;1;2}
3/3+2/3=5/3