K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
15 tháng 2 2019

1. A B M C D E F
a) + ME // BD

\(\Rightarrow\dfrac{ME}{BD}=\dfrac{AM}{AB}=\dfrac{a}{a+b}\)

\(\Rightarrow\dfrac{ME}{b}=\dfrac{a}{a+b}\Rightarrow ME=\dfrac{ab}{a+b}\)

+ Tương tự : \(MF=\dfrac{ab}{a+b}\)

b) +ΔMEF có ME = MF, \(\widehat{EMF}=60^o\)

=> ΔMEF đều

2. A B C D O E F

+ AB // CD \(\Rightarrow\dfrac{AE}{CF}=\dfrac{OE}{OF}\)

+ Tương tự : \(\dfrac{BE}{DF}=\dfrac{OE}{OF}\)

\(\Rightarrow\dfrac{BE}{DF}=\dfrac{AE}{CF}\) => DF = CF ( do AE = BE )

=> F là trung điểm của CD

8 tháng 1 2018

7)

a) ta có:

\(\widehat{AKE}=\widehat{BAD}\) (đồng vị và AD//KM)

\(\widehat{AEK}=\widehat{DAE}\) (so le trong và AD//KM)

\(\widehat{BAD}=\widehat{DAE}\) (AD là tia phân giác)

=> \(\widehat{AKE}=\widehat{AEK}\)

=> tam giác AKE cân tại A

=> AK=AE

b) Xét tam giác BKM ta có:

AD//KM(gt)

=> \(\dfrac{BK}{AK}=\dfrac{MB}{MD}\) (Đlý thales thuận)

Xét tam giác ADC ta có:

AD//EM(gt)

=> \(\dfrac{CE}{AE}=\dfrac{CM}{MD}\) (Đlý thales thuận)

Mà AE=AK(cmt)

CM=MB(M là trung điểm BC)

Nên \(\dfrac{CE}{AK}=\dfrac{MB}{MD}\)

\(\dfrac{BK}{AK}=\dfrac{MB}{MD}\) (cmt)

Nên CE=AB

9 tháng 1 2018

9) Xét tam giác ODF ta có:

DF//EB(tc hthang ABCD)

=> \(\dfrac{DF}{EB}=\dfrac{FO}{EO}\) (Hệ quả Thales)

Xét tam giác OCF ta có:

CF//EA(tc hthang ABCD)

=> \(\dfrac{FC}{AE}=\dfrac{FO}{EO}\) (Hệ quả Thales)

\(\dfrac{DF}{EB}=\dfrac{FO}{EO}\) (cmt)

AE=EB(E là trung điểm AB)

Nên DF=FC

=> F là trung điểm DC

9 tháng 1 2018

a) Ta có:

\(\widehat{CMA}=\widehat{DBA}\left(=60^o\right)\)

Mà 2 góc nằm ở vị trí đồng vị

=> EM//BD

Xét tam giác ABD ta có:

EM//BD(cmt)

=> \(\dfrac{EM}{BD}=\dfrac{AM}{AB}\Rightarrow\dfrac{EM}{b}=\dfrac{a}{ab}\Rightarrow EM=1\)

Cmtt: \(\dfrac{FM}{AC}=\dfrac{BM}{AB}\Rightarrow\dfrac{FM}{b}=\dfrac{a}{ab}\Rightarrow FM=1\)

b) Ta có:

FM=EM(=1)

=> tam giác EMF cân tại M

Ta có:

\(\widehat{CMA}+\widehat{EMF}+\widehat{DMB}=180^o\)

\(60^o+\widehat{EMF}+60^o=180^o\)

\(\widehat{EMF}=60^o\)

Xét tam giác EMF cân tại M ta có:

\(\widehat{EMF}=60^o\) (cmt)

=> tam giác EMF đều

3 tháng 8 2019

Vì các tam giác AMC và BMD đều nên B M D ^ = M A C ^ = 90 °  (vì hai góc ở vị trí đồng vị) => MD // AC

Vì MD // AC nên theo hệ quả định lý Talet cho hai tam giác DEM và AEC ta có M E E C = M D A C = b a

Suy ra

M E E C = b a ⇒ M E M E + E C = b b + a ⇒ M E a = b b + a ⇒ M E = a b b + a

Tương tự MF =  b a a + b

Vậy  M E = M F = a b b + a

Đáp án: B

15 tháng 9 2017

Đặt MB = a => MA = 2a

Vì các tam giác AMC và BMD đều nên B M D ^ = M A C ^ = 60 °  (hai góc ở vị trí đồng vị) => MD // AC

Vì MD // AC nên theo hệ quả định lý Talet cho hai tam giác DEM và AEC ta có

M E E C = M D A C = M B M A = 1 2

Suy ra:

M E E C = b a ⇒ M E M E + E C = 1 1 + 2 = 1 3 ⇒ M E 2 a = 1 3 ⇒ M E = 2 a 3

Tương tự MF =  2 a 3

Vậy  M E = M F = 2 a 3

Đáp án: B

17 tháng 9

10 năm r

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

25 tháng 4 2018

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI