Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ :
a) CE là đường phân giác của góc C nên \(\frac{EA}{EB}=\frac{AC}{CB}\Rightarrow\frac{EA}{EB}=\frac{6}{10}\)
\(\frac{EA}{EB+EA}=\frac{6}{6+10}\Rightarrow\frac{EA}{AB}=\frac{6}{10}\)
\(\Rightarrow EA=8.\frac{6}{16}=3\left(cm\right)\)nên EB =5 cm
Cũng chứng minh tương tự ta có :
AD=\(\frac{8}{3}\)cm và DC = \(\frac{10}{3}\)cm
b) BK = \(\frac{40}{7}\)cm => KC = \(\frac{30}{7}\)cm vậy \(\frac{KC}{KB}=\frac{3}{4}=\frac{AC}{AB}\)nên AK là đường phân giác của góc A , do đó AK , BD , CE đồng qua ( đpcm )
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm