K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Bài 1:

a)  \(A=-3+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)

\(A=-3+\frac{1}{1+\frac{1}{\frac{4}{3}}}\)

\(A=-3+\frac{1}{1+\frac{3}{4}}\)

\(A=-3+\frac{1}{\frac{7}{4}}\)

\(A=-3+\frac{4}{7}=-\frac{17}{7}\)

7 tháng 2 2020

c) \(\frac{4+x}{7+y}=\frac{4}{7}\)

\(7\left(4+x\right)=4\left(7+y\right)\)

\(28+7x=28+4y\)

\(7x=4y\)

\(x=\frac{4}{7}y\)(1)

Thế (1) vào x + y = 55, ta được

\(\frac{4}{7}y+y=55\)

\(\frac{11}{7}y=55\)

\(y=35\)

\(x=55-y=55-35=15\)

10 tháng 3 2019

sory máy mình ko vẽ đc hình

Bài 1: 

\(\Leftrightarrow n^2-1+2⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;2\right\}\)

hay \(n\in\left\{0;1\right\}\)

Bài 4: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

\(\widehat{A}\) chung

Do đó: ΔAHB\(\sim\)ΔAKC

Suy ra: AH/AK=AB/AC

hay AH/AB=AK/AC

Xét ΔAHK và ΔABC có 

AH/AB=AK/AC
\(\widehat{HAK}\) chung

Do đó: ΔAHK\(\sim\)ΔABC

Suy ra: \(\widehat{AHK}=\widehat{ABC}\)

27 tháng 7 2018

1,

a, \(\left(x-\dfrac{1}{7}\right)^4=\left(x-\dfrac{1}{7}\right)^2\)

\(\Leftrightarrow\left(x-\dfrac{1}{7}\right)^4-\left(x-\dfrac{1}{7}\right)^2=0\)

\(\Leftrightarrow\left[\left(x-\dfrac{1}{7}\right)^2+x-\dfrac{1}{7}\right]\left[\left(x-\dfrac{1}{7}\right)^2-x+\dfrac{1}{7}\right]=0\)

\(\Leftrightarrow\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x+x-\dfrac{1}{7}\right]\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x-x+\dfrac{1}{7}\right]=0\)

\(\Leftrightarrow\left(x^2+\dfrac{5}{7}x-\dfrac{6}{49}\right)\left(x^2-\dfrac{9}{7}x+\dfrac{8}{49}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+\dfrac{5}{7}x-\dfrac{6}{49}=0\\x^2-\dfrac{9}{7}x+\dfrac{8}{49}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=\dfrac{8}{7}\end{matrix}\right.\)

Vậy...

b, \(\left|x+6,4\right|+\left|x+2,5\right|+\left|x+8,1\right|=4x\)

\(\Leftrightarrow x+6,4+x+2,5+x+8,1=4x\) với mọi x

\(\Leftrightarrow x+x+x-4x=-8,1-2,5-6,4\)

\(\Leftrightarrow-x=-17\)

\(\Leftrightarrow x=17\)

Vậy...

30 tháng 10 2018

a. Ta có: \(\widehat{HAB}+\widehat{HAD}=\widehat{BAD}\)

\(\widehat{HAC}-\widehat{HAD}=\widehat{DAC}\)

Vì AD là tia phân giác của góc BAC => \(\widehat{BAD}=\widehat{DAC}\) =.> ĐPCM

b. Xét tam giác HAC có \(\widehat{AHC}+\widehat{HCA}+\widehat{HAC}=180\text{đ}\text{ộ}\)

=>\(\widehat{HAC}=180^o-\widehat{AHC}-\widehat{HCA}\)

Xét tam giác HAB có \(\widehat{HAB}+\widehat{ABH}+\widehat{BHA}=180^o\)

=> \(\widehat{HAB}=180^o-\widehat{ABH}-\widehat{BHA}\)

Ta có: \(\widehat{HAC}-\widehat{HAB}=180^o-\widehat{AHC}-\widehat{HAC}-\left(180^o-\widehat{ABH}-\widehat{BHA}\right)\)

\(=180^o-90^o-\widehat{HCA}-180^o+\widehat{ABH}+90^o\)

\(=180^o-180^o+90^o-90^o+\widehat{ABH}-\widehat{HCA}\)

\(=\widehat{ABH}-\widehat{HCA}=>\text{Đ}PCM\)

c. Ta có: \(\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)=\dfrac{\widehat{ABC}-\widehat{ACB}}{2}=\dfrac{\widehat{HAC}-\widehat{HAB}}{2}\)

\(=\dfrac{2\widehat{DAH}}{2}=\widehat{DAH}=>\text{Đ}pcm\)

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC lấy...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0