K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 3 2017

Bài 1)

Gọi số phức $z$ có dạng \(z=a+bi(a,b\in\mathbb{R})\).

Ta có \(|z|+z=3+4i\Leftrightarrow \sqrt{a^2+b^2}+a+bi=3+4i\)

\(\Rightarrow\left\{\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=\frac{5}{6}\\b=4\end{matrix}\right.\)

Vậy số phức cần tìm là \(\frac{5}{6}+4i\)

b)

\(\left\{\begin{matrix} z_1+3z_1z_2=(-1+i)z_2\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{z_1}{z_2}+3z_1=-1+i\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \frac{z_1}{z_2}+z_1+z_2=(-1+i)-(3+2i)=-4-i\)

\(\Leftrightarrow w=-4-i\Rightarrow |w|=\sqrt{17}\)

6 tháng 9 2019

Đáp án D.

8 tháng 12 2017

NV
10 tháng 4 2022

Đặt \(z=x+yi\Rightarrow w=\dfrac{1}{\sqrt{x^2+y^2}-x-yi}=\dfrac{\sqrt{x^2+y^2}-x+yi}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}=\dfrac{1}{8}\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{2x^2+2y^2-2x\sqrt{x^2+y^2}}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}\left(\sqrt{x^2+y^2}-x\right)}=\dfrac{1}{4}\Rightarrow\dfrac{1}{\sqrt{x^2+y^2}}=\dfrac{1}{4}\)

\(\Rightarrow x^2+y^2=16\)

\(\Rightarrow\) Tập hợp \(z_1;z_2\) là đường tròn tâm O bán kính \(R=4\)

Gọi M, N lần lượt là điểm biểu diễn \(z_1;z_2\), do \(\left|z_1-z_2\right|=2\Rightarrow MN=2\)

Gọi \(P\left(0;5\right)\) và Q là trung điểm MN

\(\Rightarrow P=MP^2-NP^2=\overrightarrow{MP}^2-\overrightarrow{NP}^2=\left(\overrightarrow{MP}-\overrightarrow{NP}\right)\left(\overrightarrow{MP}+\overrightarrow{NP}\right)\)

\(=2\overrightarrow{MN}.\overrightarrow{PQ}=2\overrightarrow{MN}\left(\overrightarrow{PO}+\overrightarrow{OQ}\right)=2\overrightarrow{MN}.\overrightarrow{PO}=2MN.PO.cos\alpha\)

Trong đó \(\alpha\) là góc giữa \(MN;PO\)

Do MN, PO có độ dài cố định \(\Rightarrow P_{max}\) khi \(cos\alpha_{max}\Rightarrow\alpha=0^0\Rightarrow MN||PO\)

Mà MN=2 \(\Rightarrow M\left(\sqrt{15};-1\right);N\left(\sqrt{15};1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PM}=\left(\sqrt{15};-6\right)\\\overrightarrow{PN}=\left(\sqrt{15};-4\right)\end{matrix}\right.\)

\(\Rightarrow P_{max}=PM^2-PN^2=15+36-\left(15+16\right)=20\)

NV
10 tháng 4 2022

undefined

13 tháng 11 2017

Đáp án A

Đặt Khi đó, ta có

Tập hợp các số phức nằm trong hoặc trên đường tròn tâm I 1 (1;0) bán kính R 1   =   5

=> Tập hợp các số phức nằm ngoài hoặc trên đường tròn tâm I 2 ( 0 ; 1 ) , bán kính R 2   =   3

Dựa vào hình vẽ, ta thấy rằng 

16 tháng 3 2019

Đáp án A

Phương trình 

Ta có 

Vật giá trị nhỏ nhất của biểu thức P là 

8 tháng 1 2018

Chọn C.

·    

·     Dấu “=” xảy ra khi:

·    

·     Dấu “=” xảy ra khi:

23 tháng 5 2019

22 tháng 3 2019

Đáp án A