Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
a, Xét : x-4 = 0 => x= 4
2x+1 = 0 => x= \(\frac{1}{2}\)
x+3 = 0 => x = -3
x + 9 = 0 => x = -9
Khi đó ta có bảng xét dấu :
x | -9 | -3 | \(\frac{1}{2}\) | 4 |
x-4 | -13 | -7 | \(\frac{-7}{2}\) | 0 |
2x+1 | -17 | -5 | 2 | 9 |
x+3 | -6 | 0 | \(\frac{7}{2}\) | 7 |
x+9 | 0 | 6 | \(\frac{19}{2}\) | 13 |
=> có 5 trường hợp:
TH1 : \(x\le-9\)
TH2 : \(-9\le x< -3\)
TH3 : \(-3\le x< \frac{1}{2}\)
TH4 : \(\frac{1}{2}\le x< 4\)
Do đó :
TH1 : \(x\le-9\)
Ta có : /x-4/ = -(x-4) = 4 - x
/2x+1/ = -(2x+1) = -2x -1
/x+3/ = -(x + 3 ) = -x - 3
/x-9/ = -(x-9) = -x + 9 Thay vào đề bài ta có:
3.(4-x) + 2x-1 +5(-x - 3) -x-9 = 5
=> 12 - 3x + 2x - 1 + -5x - 15 - x - 9 = 5
=>(12 - 1 - 15 -9 ) +(-3x +2x -5x -x) = 5
=> -13 - 7x = 5
7x = -13 - 5
7x = -18
x = \(\frac{-18}{7}\)( Ko TM)
Tương tự với 4 trường hợp còn lại.
*Bn lm bảng xét dấu ra nháp nhé!
Theo bài ra ta có phương trình:
Với x<-4 ta có:
\(-\text{3(x+4) + 2x+1=5}\)
\(\Leftrightarrow2x-3x-12+1=5\)
\(\Leftrightarrow x=-16\left(TM\right)\)
\(\text{Với }-4\le x< -\frac{1}{2}\text{ ta có:}\)
\(3\left(x+4\right)+2x+1=5\)
\(\Leftrightarrow3x+2x+12+1=5\)
\(\Leftrightarrow x=-\frac{8}{5}\left(TM\right)\)
\(\text{Với }x\ge-\frac{1}{2}\text{ ta có:}\)
\(3\left(x+4\right)-2x-1=5\)
\(\Leftrightarrow3x-2x+12-1=5\)
\(\Leftrightarrow x=-6\left(koTM\right)\)
Vậy x có 2 giá trị là ...
đk 1 - x\(\ge\)0
=> x \(\le\)1
Khi đó |x - 2| = -(x - 2)
|x - 3| = -(x - 3)
....
|x - 9| = -(x - 9)
Khi đó |x - 2| + |x - 3| +... + |x - 9| = 1-x (8 cặp số ở VT)
<=> -(x - 2) + -(x - 3) + .... + -(x - 9) = 1 - x
=> -x + 2 - x + 3 - .... - x + 9 = 1 - x
=> -(x + x + ... x) + (2 + 3 + ... + 9) = 1 - x
8 hạng tử x 8 hạng tử
=> -8x + 44 = 1 - x
=> 7x = 43
=> x = 43/7
x là số chắn
A=(-1)^n.3^n
A+3A=4A=1+(-1)^n.3^(n+1)
với x chẵn
A= [3^(x+1)+1]/4 vô nghiệm nguyên đề sai
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
/1-x/ là giá trị tuyệt đối à
3.(3-x) + 4.(1-x) = 15
=> 9 - 3x + 4 - 4x = 15
=> -7x + 13 = 15
=> -7x = 2
=> x = \(-2\over 7\)