Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(\frac{100}{1.101}+\frac{100}{2.102}+\frac{100}{3.103}+...+\frac{100}{10.110}\right).x=10.\left(\frac{10}{1.10}+\frac{10}{2.12}+...+\frac{10}{100.110}\right)\)
\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{10}-\frac{1}{110}\right).x=10.\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)
\(\Rightarrow\left(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right).x=10.\left(\left(1+\frac{1}{2}+..+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\right)\)
\(\Rightarrow\left(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right).x=10.\left(\left(1+\frac{1}{2}+..+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right)\)=> x = 10
Nhân 100 vào 2 vế ta được :
(100/1.101 + 100/2.102 + 100/3.103 +....+100/10.110) . x = (10/1.11 + 10/2.12 + 10/100.110 )10
=>(1+1/2+1/3+...+1/10-1/101-...-1/110)x=(1+1/2+1/3+...+1/10+1/11+...+1/100-1/11-...-1/100-1/101-...-1/110)10
=>(1+1/2+1/3+...+1/10-1/101-...-1/110)x=(1+1/2+1/3+...+1/10-1/101-...-1/110)10
=>x=10
Hay thì like nha ! hj hj
tìm x biết:
(1/1.101 + 1/2.102 + 1/3.103+....+1/10.110) .x = 1/1.11 + 1/2.12 + 1/3.13 +....+1/100.110
⇒(1−1101 +12 −1102 +13 −1103 +...+110 −1110 ).x=10.(1−111 +12 −112 +...+1100 −1110 )
⇒((1+12 +13 +...+110 )−(1101 +1102 +...+1110 )).x=10.((1+12 +..+110 +111 +112 +...+1100 )−(111 +112 +...+1110 ))
\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+\frac{1}{3\cdot103}+...+\frac{1}{10\cdot110}\right)x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
\(\Rightarrow\left(\frac{100}{1\cdot101}+\frac{100}{2\cdot102}+\frac{100}{3\cdot103}+...+\frac{100}{100\cdot110}\right)x=10\left(\frac{10}{1\cdot11}+\frac{10}{2\cdot12}+...+\frac{10}{100\cdot110}\right)\)
\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+....+\frac{1}{10}-\frac{1}{110}\right)x=10\)\(\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)
\(\Rightarrow\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{110}\right)\right]x=10\)\(\left[\left(1+\frac{1}{2}+....+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+....+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{110}\right)\right]\)
\(\Rightarrow\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{110}\right)\right]x=10\)
\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)
\(\Rightarrow x=10\)
Đặt :
\(A=\dfrac{1}{1.101}+\dfrac{1}{2.102}+\dfrac{1}{3.103}+..................+\dfrac{1}{10.110}\)
\(A=\dfrac{1}{100}\left(\dfrac{100}{1.101}+\dfrac{100}{2.102}+..................+\dfrac{100}{10.101}\right)\)
\(A=\dfrac{1}{100}\left(1-\dfrac{1}{101}+\dfrac{1}{2}-\dfrac{1}{102}+..............+\dfrac{1}{10}-\dfrac{1}{101}\right)\)
\(A=\dfrac{1}{100}\left[\left(1+\dfrac{1}{2}+...........+\dfrac{1}{10}\right)-\left(\dfrac{1}{101}+\dfrac{1}{102}+..........+\dfrac{1}{101}\right)\right]\)
Đặt :
\(B=\dfrac{1}{1.11}+\dfrac{1}{2.12}+...............+\dfrac{1}{100.101}\)
\(B=\dfrac{1}{10}\left(\dfrac{10}{1.11}+\dfrac{10}{2.12}+.............+\dfrac{10}{100.101}\right)\)
\(B=\dfrac{1}{10}\left(1-\dfrac{1}{11}+\dfrac{1}{2}-\dfrac{1}{12}+..............+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(B=\dfrac{1}{10}\left[\left(1+\dfrac{1}{2}+...........+\dfrac{1}{100}\right)-\left(\dfrac{1}{11}+\dfrac{1}{12}+...............+\dfrac{1}{101}\right)\right]\)
\(=\dfrac{1}{10}\left[\left(1+\dfrac{1}{2}+.........+\dfrac{1}{10}\right)-\left(\dfrac{1}{101}+\dfrac{1}{102}+...........+\dfrac{1}{101}\right)\right]\)
\(\Rightarrow B=10A\)
\(\Rightarrow A.x=10A\)
\(x=10A:A\)
\(x=10\) (thỏa mãn)
Vậy \(x=10\) là giá trị cần tìm
~ Chúc bn học tốt ~
khi ko mún tích thì tích 1 tích
khi mún tích thì tích 50 tích
\(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103+...}+\frac{1}{10.110}\)
\(A=\frac{1}{100}(\frac{100}{1.101}+\frac{100}{2.102}+\frac{100}{3.103}+...+\frac{100}{10.110})\)
\(A=\frac{1}{100}(\frac{1}{1}-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110})\)
\(A=\frac{1}{100}((\frac{1}{1}+\frac{1}{2}+...+\frac{1}{10})-(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}))\) ok?
\(B=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
\(B=\frac{1}{10}(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110})\)
\(B=\frac{1}{10}(\frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110})\)
\(B=\frac{1}{10}((\frac{1}{1}+\frac{1}{2}+...+\frac{1}{100})-(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}))\)=\(\frac{1}{10}((\frac{1}{1}+\frac{1}{2}+...+\frac{1}{10})-(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}))\)
B=10A
A.x=10A suy ra x=10
gõ xong mém xỉu. :)
ta gọi phần trong ngoặc là A thì ta có
A nhân x = A
x= A-A
x=1
Đặt C = \(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}\)
=> 100C = \(\frac{100}{1.101}+\frac{100}{2.102}+...+\frac{100}{10.110}\)
=> 100C = \(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\)
=> 100C = \(\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\)
=> C = \(\frac{1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)}{100}\)
Lại có B = \(\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
=> 10B = \(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110}\)
=> 10B = \(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\)
=> 10B = \(\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\)
=> 10B = \(1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\)
=> B = \(\frac{1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)}{10}\)
Khi đó \(\left(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}\right)x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
<=> C.x = B
<=> \(\frac{1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)}{100}x=\frac{1+\frac{1}{2}+...+\frac{1}{10}-\left(\frac{1}{101}+\frac{1}{102}+..+\frac{1}{110}\right)}{10}\)
=> \(x=10\)
Vậy x = 10