K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

Ta có : \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)

Để A là số nguyên thì \(5⋮3n+2\)

hay \(3n+2\inƯ_5=\left\{\pm1;\pm5\right\}\)

3n+21-15-5
3n-1-33-7
n\(\frac{-1}{3}\)-11\(\frac{-7}{3}\)

Vậy để A nguyên thì \(n\in\left\{\frac{-1}{3};-1;1;\frac{-7}{3}\right\}\)

2 tháng 4 2018

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

2 tháng 8 2015

\(A=\frac{6n-1}{3n-2}=\frac{6n-4+3}{3n-2}=\frac{2\left(3n-2\right)}{3n-2}+\frac{3}{3n-2}=2+\frac{3}{3n-2}\)

Vì AEZ, 2EZ nên 3/3n-2 EZ => 3n-2E Ư(3)

3n-21-13-3
n11/35/3

-1/3

 

21 tháng 7 2015

\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 =  \({\pm 1 , \pm (6n-1)}\)

.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)

.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )

.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )

.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )

Kết luận vậy n = { -1,1 }

19 tháng 3 2016

bài lớp 6 học sinh giỏi đấy

31 tháng 7 2023

\(A=\dfrac{6n-1}{3n-2}\)

\(\Rightarrow A=\dfrac{6n-4+3}{3n-2}\)

\(\Rightarrow A=\dfrac{2\left(3n-2\right)+3}{3n-2}\)

\(\Rightarrow A=2+\dfrac{3}{3n-2}\ge2+\dfrac{3}{3.1-2}=5\left(n=1\in Z\right)\)

\(\Rightarrow Min\left(A\right)=5\left(n=1\right)\)

30 tháng 7 2023

mkmhkkkkkkkkkkkkkk

AH
Akai Haruma
Giáo viên
30 tháng 7 2023

Lời giải:
$\frac{6n-1}{3n-2}=\frac{2(3n-2)+3}{3n-2}$

$=2+\frac{3}{3n-2}$

Để phân số trên có giá trị nhỏ nhất thì $\frac{3}{3n-2}$ nhỏ nhất

$\Rightarrow 3n-2$ là số âm lớn nhất.

Với $n$ nguyên thì $3n-2$ âm lớn nhất bằng -2$ khi $n=0$

31 tháng 5 2018

Bài 1: 

a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)

Để A có giá trị nguyên

\(\Rightarrow\frac{5}{n-3}\in z\)

\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)

nếu n-3 = 5 => n = 8 (TM)

n-3 = -5 => n= -2 (TM)

n-3 = 1 => n = 4 (TM)

n-3 = -1 => n = 2 (TM)

KL: \(n\in\left(8;-2;4;2\right)\)

b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)

Để A đạt giá trị lớn nhất

=>  \(\frac{5}{n-3}\le5\)

Dấu "=" xảy ra khi

\(\frac{5}{n-3}=5\)

\(\Rightarrow n-3=5:5\)

\(n-3=1\)

\(n=4\)

KL: n =4 để A đạt giá trị lớn nhất

Bài 2 bn làm tương tự nha!

8 tháng 7 2016

a) \(A=\frac{6n+7}{2n+3}=\frac{6n+9}{2n+3}-\frac{2}{2n+3}\) nguyên

<=> 2n + 3 thuộc Ư(2) = {-2; -1; 1; 2}

<=> 2n thuộc {-5; -4; -2; -1}

Vì n nguyên nên n thuộc {-2; -1}

b) A có GTNN <=> \(\frac{2}{2n+3}\) có GTLN

<=> 2n + 3 là số nguyên dương nhỏ nhất 

<=>  2n + 3 = 1 

<=> 2n = -2

<=> n = -1

8 tháng 7 2016

a)\(A=\frac{6n+7}{2n+3}=\frac{2n+2n+2n+3+4}{2n+3}=\frac{4}{2n+3}\)

\(\Rightarrow2n+3\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)

Nếu 2n+3 = 1 => n = -2 (nhận)

Nếu 2n+3 = 2 => n =-0,5 (loại)

Nếu 2n + 3 = 4 => n = 3,5 (loại)

Nếu 2n + 3 = -1 => n = 1 (nhận)

Nếu 2n + 3 = -2 => n = -2,5 (loại)

Nếu 2n + 3 = -4 => n =-3,5 (loại)

Vậy n \(\in\) {-2;1}

b) A GTNN => \(\frac{2}{2n+3}\) có GTLN

=> 2n + 3 là số nguyên dương nhỏ nhất

=> 2n + 3 = 1 

=> 2n = -2

=> n = -1

8 tháng 8 2020

Bg

a) Ta có: A = \(\frac{4n+1}{3n+1}\)    (n thuộc Z)

Để A thuộc Z thì 4n + 1 \(⋮\)3n + 1

=> 4.(3n + 1) - 3.(4n + 1) \(⋮\)3n + 1

=> 12n + 4 - (12n + 3) \(⋮\)3n + 1

=> 12n + 4 - 12n - 3 \(⋮\)3n + 1

=> (12n - 12n) + (4 - 3) \(⋮\)3n + 1

=> 1 \(⋮\)3n + 1

=> 3n + 1 thuộc Ư(1)

Ư(1) = {1; -1}

=> 3n + 1 = 1 hay -1

=> 3n = 1 - 1 hay -1 - 1

=> 3n = 0 hay -2

=> n = 0 ÷ 3 hay -2 ÷ 3

=> n = 0 hay -2/3

Mà n thuộc Z

=> n = 0

Vậy n = 0 thì A nguyên