Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{6n-1}{3n-2}\)
\(\Rightarrow A=\dfrac{6n-4+3}{3n-2}\)
\(\Rightarrow A=\dfrac{2\left(3n-2\right)+3}{3n-2}\)
\(\Rightarrow A=2+\dfrac{3}{3n-2}\ge2+\dfrac{3}{3.1-2}=5\left(n=1\in Z\right)\)
\(\Rightarrow Min\left(A\right)=5\left(n=1\right)\)
\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 = \({\pm 1 , \pm (6n-1)}\)
.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)
.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )
.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )
.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )
Kết luận vậy n = { -1,1 }
a) \(A=\frac{6n+7}{2n+3}=\frac{6n+9}{2n+3}-\frac{2}{2n+3}\) nguyên
<=> 2n + 3 thuộc Ư(2) = {-2; -1; 1; 2}
<=> 2n thuộc {-5; -4; -2; -1}
Vì n nguyên nên n thuộc {-2; -1}
b) A có GTNN <=> \(\frac{2}{2n+3}\) có GTLN
<=> 2n + 3 là số nguyên dương nhỏ nhất
<=> 2n + 3 = 1
<=> 2n = -2
<=> n = -1
a)\(A=\frac{6n+7}{2n+3}=\frac{2n+2n+2n+3+4}{2n+3}=\frac{4}{2n+3}\)
\(\Rightarrow2n+3\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
Nếu 2n+3 = 1 => n = -2 (nhận)
Nếu 2n+3 = 2 => n =-0,5 (loại)
Nếu 2n + 3 = 4 => n = 3,5 (loại)
Nếu 2n + 3 = -1 => n = 1 (nhận)
Nếu 2n + 3 = -2 => n = -2,5 (loại)
Nếu 2n + 3 = -4 => n =-3,5 (loại)
Vậy n \(\in\) {-2;1}
b) A GTNN => \(\frac{2}{2n+3}\) có GTLN
=> 2n + 3 là số nguyên dương nhỏ nhất
=> 2n + 3 = 1
=> 2n = -2
=> n = -1
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
n-4 | 21 | 1 | 3 | 7 |
n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
2n-1 | 8 | 1 | 2 | 4 |
n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
\(B=\frac{6n+7}{2n+3}=\frac{3\left(2n+3\right)-2}{2n+3}=\frac{3\left(2n+3\right)}{2n+3}-\frac{2}{2n+3}=3-\frac{2}{2n+3}\in Z\)
=>2 chia hết 2n+3
=>2n+3 thuộc Ư(2)={1;-1;2;-2}
=>2n thuộc {-2;-4} (vì n nguyên)
=>n thuộc {-1;-2}
Để B đạt GTNN
=>2n+3 đạt GTLN và 6n+7 đạt GTNN
Với n=-2 =>Bmin=\(\frac{6\cdot\left(-2\right)+7}{2\cdot\left(-1\right)+3}=\frac{-5}{-1}=5\)
- n=-1 =>Bmin=\(\frac{6\cdot\left(-1\right)+7}{2\cdot\left(-1\right)+3}=\frac{1}{1}=1\)
Vì 5>1 =>Bmin=1 xảy ra khi n=-1
a) \(B=\frac{6n+7}{2n+3}=\frac{6n+9-2}{2n+3}=\frac{3\left(2n+3\right)-2}{2n+3}=3-\frac{2}{2n+3}\)mà để \(B\in Z\)thì \(\frac{2}{2n+3}\in Z\)
=> 2n + 3 = -2;-1;1;2 => 2n = -5 ; -4 ; -2 ; -1 => n = -2 ; -1 vì nguyên
b)Xét \(B=3-\frac{2}{2n+3}\)vừa phân tích ở câu a , ta thấy B nhỏ nhất khi \(\frac{2}{2n+3}\) lớn nhất
=> 2n + 3 dương , nhỏ nhất nên chỉ có thể bằng 1 => 2n = -2 => n = 1
Bài 1:
a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)
Để A có giá trị nguyên
\(\Rightarrow\frac{5}{n-3}\in z\)
\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)
nếu n-3 = 5 => n = 8 (TM)
n-3 = -5 => n= -2 (TM)
n-3 = 1 => n = 4 (TM)
n-3 = -1 => n = 2 (TM)
KL: \(n\in\left(8;-2;4;2\right)\)
b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)
Để A đạt giá trị lớn nhất
=> \(\frac{5}{n-3}\le5\)
Dấu "=" xảy ra khi
\(\frac{5}{n-3}=5\)
\(\Rightarrow n-3=5:5\)
\(n-3=1\)
\(n=4\)
KL: n =4 để A đạt giá trị lớn nhất
Bài 2 bn làm tương tự nha!
Lời giải:
$\frac{6n-1}{3n-2}=\frac{2(3n-2)+3}{3n-2}$
$=2+\frac{3}{3n-2}$
Để phân số trên có giá trị nhỏ nhất thì $\frac{3}{3n-2}$ nhỏ nhất
$\Rightarrow 3n-2$ là số âm lớn nhất.
Với $n$ nguyên thì $3n-2$ âm lớn nhất bằng -2$ khi $n=0$