Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C/m dạng tổng quát \(\frac{a^{n+1}}{b+c-a}+\frac{b^{n+1}}{c+a-b}+\frac{c^{n+1}}{a+b-c}\ge a^n+b^n+c^n\left(n\ge1\right)\)
Không mất tính tổng quát giả sử \(a\ge b\ge c>0\)
Suy ra \(\frac{a}{b+c-a}\ge\frac{b}{c+a-b}\ge\frac{c}{a+b-c}\)
Áp dụng BĐT Chebyshev ta có:
\(Σ\frac{a^{n+1}}{b+c-a}=Σa^n\cdot\frac{a}{b+c-a}\ge\frac{1}{3}Σa^n\cdotΣ\frac{a}{b+c-a}\geΣa^n\)
Đề đúng không thế \(\sqrt{a^{2016}}\) thì viết luôn là \(a^{1008}\)cho rồi
Fix: \(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge a^{2015}+b^{2015}+c^{2015}\)
WLOG \(a\ge b\ge c\Rightarrow\frac{a}{b+c-a}\ge\frac{b}{c+a-b}\ge\frac{c}{a+b-c}\)
Thật vậy \(\frac{a}{b+c-a}-\frac{b}{c+a-b}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(a+b+c\right)}{\left(b+c-a\right)\left(c+a-b\right)}\ge0\left(\text{đúng vì}\hept{\begin{cases}a\ge b\\\text{a,b,c là 3 cạnh tam giác}\end{cases}}\right)\)
Tương tự cho các BĐT còn lại sau đó áp dụng BĐT Chebyshev:
\(VT=\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\)
\(=a^{2015}\cdot\frac{a}{b+c-a}+b^{2015}\cdot\frac{b}{c+a-b}+c^{2015}\cdot\frac{c}{a+b-c}\)
\(\ge\frac{1}{3}\left(a^{2015}+b^{2015}+c^{2015}\right)\left(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\right)\)
Mà ta đã biết \(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\) (Easy to prove)
\(\Rightarrow VT\ge\frac{1}{3}\cdot3\cdot\left(a^{2015}+b^{2015}+c^{2015}\right)=a^{2015}+b^{2015}+c^{2015}=VP\)
Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\) (áp dụng Bất Đẳng Thức Cosi)
\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)
\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)
Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)
Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)
Dấu "=" xảy ra khi a=b=c
Ko làm mất tính tổng quát, giả sử a >= b >= c.
Ta có: \(\frac{a^{2016}}{b+c-a}\) + \(\frac{b^{2016}}{c+a-b}\) + \(\frac{c^{2016}}{a+b-c}\)- ( a2015 + b2015 + c2015 ) \(\left(1\right)\)
= \(\left(\frac{a^{2016}}{b+c-a}-a^{2015}\right)\)+ \(\left(\frac{b^{2016}}{c+a-b}-b^{2015}\right)\)+ \(\left(\frac{c^{2016}}{a+b-c}-c^{2015}\right)\)
= \(\frac{2a^{2016}-a^{2015}\left(b+c\right)}{b+c-a}\)+ \(\frac{2b^{2016}-b^{2015}\left(a+c\right)}{c+a-b}\)+ \(\frac{2c^{2016}-c^{2015}\left(a+b\right)}{a+b-c}\)
= \(\frac{a^{2015}\left(2a-b-c\right)}{b+c-a}\)+ \(\frac{b^{2015}\left(2b-a-c\right)}{c+a-b}\)+ \(\frac{c^{2015}\left(2c-a-b\right)}{a+b-c}\)
- Theo bđt tam giác và điều giả sử, cm được biểu thức vừa thu được >= 0 và dấu = xra <=> a = b = c.
Do đó, (1) lớn hơn = 0 => ta có đpcm.
Vậy..........
- Tớ ko nghĩ bài làm của tớ đúng đâu. Nếu sai mong bạn thông cảm!
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
Thắng Nguyễn Phần cuối cùng viết rõ ra một chút :
\(2\sqrt{2}\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\ge\frac{y^2+z^2-x^2}{x}+\frac{y^2+x^2-z^2}{z}+\frac{x^2+z^2-y^2}{y}\)
\(\frac{y^2}{x}+\frac{z^2}{x}+\frac{y^2}{z}+\frac{x^2}{z}+\frac{x^2}{y}+\frac{z^2}{y}-\sqrt{2015}\ge\frac{\left[2\left(x+y+z\right)\right]^2}{2\left(x+y+z\right)}-\sqrt{2015}=\sqrt{2015}\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\sqrt{2015}}{2\sqrt{2}}=\frac{1}{2}\sqrt{\frac{2015}{2}}\)
Đặt \(\sqrt{a^2+b^2=z};\sqrt{a^2+c^2}=y;\sqrt{b^2+c^2}=x\left(x;y;z>0\right)\)
\(\Rightarrow a^2=\frac{y^2+z^2-x^2}{2};b=\frac{x^2+z^2-y^2}{2};c=\frac{x^2+y^2-z^2}{2}\)
Theo đề \(x+y+z=\sqrt{2015}\)
Ta có:\(b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}\cdot x\)\(\Rightarrow\frac{a^2}{b+c}\ge\frac{y^2+z^2-x^2}{2\sqrt{2}\cdot x}\)
Tương tự cho 2 cái còn lại rồi, cộng lại:
\(VT\cdot2\sqrt{2}\ge\sqrt{2015}\Rightarrow VT\ge\frac{1}{2}\sqrt{\frac{2015}{2}}\)
Bài 2:
Chứng minh bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)
(bình phương vài lần + biến đổi tương đương)
\(S\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{c^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2}\)
\(t=\left(a+b+c\right)^2\le\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
\(S\ge\sqrt{t+\frac{81}{t}}=\sqrt{t+\frac{81}{16t}+\frac{1215}{16t}}\ge\sqrt{2\sqrt{t.\frac{81}{16t}}+\frac{1215}{16.\frac{9}{4}}}=\frac{\sqrt{153}}{2}\)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}.\)
cau 1 su dung bdt tre bu sep la ra