K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

a4+b-a3b-b3a  >_ 0

a3.(a-b) + b3.(b-a) >_ 0

a3.(a+b)-b3 (a-b) >_0 ( đổi dấu )

(a-b)(a3- b3)>_0

(a-b)(a-b)(a2+ab+b2) >_0 (1)

(a-b)2(a2+ab+b2) >_0         ta có a2+ab+b2 = a2+ab+1/4b2 +3/4b= (a+1/2b)2+3/4b2 lớn hơn hoặc =0

mà (a-b)2 luôn >_ 0 nên (1) lớn hơn hoặc=0

suy ra điều phải chứng minh. dấu = xảy ra khi a=b=0

20 tháng 4 2016

Xét hiệu: a4 + b4  - ( a3b + b3a)

=    (a4 -a3b)   - (  b3a- b4) = a3(a-b) - b3(a-b) = (a-b)(a- b3) = (a-b)2(a+ ab + b2)

(a-b)2((a + b/2)2 + 3b2/4) \(\ge0\) với mọi a; b.

Vậy a4 + b4  - ( a3b + b3a) \(\ge0\)Hay a4 + b4  \(\ge\) a3b + b3a (ĐPCM)

19 tháng 7 2017

dễ lăm chỉ cần áp dụng bài toán phụ a2+b2>=2ab là ra chúc bạn làm được bài tốt nhé mình chỉ gợi ý cho thôi

19 tháng 7 2017

tương đương too

16 tháng 2 2020

Ta có : \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow a^2+b^2+1\ge ab+a+b\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

16 tháng 2 2020

Cách khác : Dùng HĐT quen thuộc :

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(a^2+b^2\ge2ab\)

Cộng các vế của BĐT, rồi chia 2 ta được BĐT cần chứng minh.

5 tháng 4 2016

Giả sử:

2a^2 + 2b^2 + 2c^2 > hoặc = 2ab + 2ac + 2bc

<=>( a^2 -2ab + b^2) + (a^2 -2ac + c^2)+(b^2 -2bc + c^2) > hoặc = 0

=<=>(a-b)^2 + (a-c)^2 + (b-c)^2 > hoặc = 0 ( BĐT luôn đúng ) => 2a^2 + 2b^2 + 2c^2 >hoặc = 2ab + 2ac + 2bc là đúng ! <=> a^2 + b^2 + c^2 > hoặc = ab+bc+ac.

Dấu = xảy ra khi : a=b=c

4 tháng 9 2016

giả sử: a4 + b4+c4+1 > 2a( ab2-a+c+1) 
<=> a^4-2(ab)^2 + b^4 + a^2-2ac+c^2 + a^2-2a+1>0 ( bạn chuyển vế rùi tách ra như mình nha) 
<=> (a^2-b^2)^2 + (a-c)^2 + (a-1)^2 >0 (1) 
nhận thấy (a^2-b^2)^2>=0 
(a-c)^2>=0 
(a-1)^2 >= 0 
=> (1) luôn đúng

a: Xét ΔABC và ΔHBA có

góc B chung

góc BAC=góc BHA

=>ΔABC đồng dạng vơi ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: ΔABD vuông tại A có AK vuông góc BD

nên BK*BD=BA^2=BH*BC