K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

a = 2014100 - 201499 = 201499(2014 - 1) = 201499.2013

b = 201499 - 201498 = 201498(2014 - 1) = 201498.2013

Vì 201499.2013 > 201498.2013 => a > b

18 tháng 7 2015

A= 2014^100 - 2014^99 = 2014^99 ( 2014 -1) = 2014^99 . 2013 

B = 2014^99 - 2014^98 = 2014^98 ( 2014 - 1) = 2013.2014^98 

Vì 2014^98 <2014^99 > 2013.2014^98 < 2013.2014^99 

=> B < A

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

28 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

\(A=\frac{99^{2015}+1}{99^{2014}+1}>\frac{99^{2015}+1+98}{99^{2014}+1+98}=\frac{99^{2015}+99}{99^{2014}+99}=\frac{99\left(99^{2014}+1\right)}{99\left(99^{2013}+1\right)}=\frac{99^{2014}+1}{99^{2013}+1}=B\)

\(\Rightarrow\)\(A>B\)

Chúc bạn học tốt ~ 

30 tháng 3 2016

Ta có:

\(\frac{2013}{2014}>\frac{2013}{2014+2015}\)

\(\frac{2014}{2015}>\frac{2014}{2014+2015}\)

\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\)

\(\Rightarrow M>N\)

30 tháng 3 2016

Ta có: \(N=\frac{2013+2014}{2014+2015}<1\);

          \(M=\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013}{2015}+\frac{2014}{2015}=\frac{4027}{2015}>1\)

\(\Rightarrow A>B\)

16 tháng 4 2016

ta xét vế M

đầu tiên bạn tách 2014 ra ngoài 

sau đó nhân 2 vào tử và mẫu , rồi tách 1/2 ra ta có 1007 .( ..........................)

bây giờ tính vế trong ngoặc và trong ngoặc <1

=> M>N

27 tháng 1 2016

\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)

\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)

\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)

\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Vậy M>N