Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x=1\)vào pt ta được :
\(1+k-4-4=0\)
\(\Leftrightarrow k-7=0\)
\(\Leftrightarrow k=7\)
b) Thay \(k=7\)vào pt ta được :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
* \(x-1=0\Leftrightarrow x=1\)
* \(x^2+8x+4=0\)
Ta có : \(\Delta=8^2-4\times4=48>0\)
\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)
Vậy ...
(1-x)(x^2+1)=0 chắc chắn sẽ không nhận x=-1 hoặc x=5 làm nghiệm rồi
(2x^2+7)(8-mx)=0
=>8-mx=0
Nếu 8-mx=0 nhận x=-1 làm nghiệm thì m+8=0
=>m=-8
Nếu 8-mx=0 nhận x=5 làm nghiệm thì 8-5m=0
=>m=8/5
Nguyễn TrươngTruong Viet TruongAkai HarumaMysterious Person Mashiro Shiina
thay x=2 vào PT ta được:
4(m2-1)+2(m-1)-3m2+m=0<=>m2+3m-6=0
<=>\(\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{33}}{2}\\x=\dfrac{-3-\sqrt{33}}{2}\end{matrix}\right.\)
a, Ta có phương trình
(m-1)x=m^2 -1 => (m-1)x-m^2+1 =0 (1)
Vậy phương trình (1) là phương trình bậc nhất (=) (m-1) khác 0.
(=) m khác 1
b, Ta có phương trình (1)
(m-1)x - m2 +1 = 0 => mx -x -m2 +1 = 0
+) Nếu m=1 => phương trình (1) có dạng 0x = 0
+) Nếu m khác 1 => Ptrinh (1) có nghiệm là x=(1-m2)/(m-1)
Vậy với m=1 ptinh có S=R
với m khác 1 ptrinh có S={(1-m2)/(m-1)}
Chúc bạn học tốt
\(4-m=\dfrac{2}{x+1}\)
Đkxđ : x +1 ≠ 0 ⇔x ≠ -1
\(\forall\) x≠-1; \(\dfrac{2}{x+1}\ne0\)
để pt có nghiệm thì 4 - m ≠ 0 ⇔ m ≠ 4
vậy m ≠ 4 thì pt có nghiệm
(a)<=>(b)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\left(4-m\right)\left(x+1\right)=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m\ne4\\x=\dfrac{2}{4-m}-1=\dfrac{2-\left(4-m\right)}{4-m}=\dfrac{m-2}{4-m}\end{matrix}\right.\)
\(x\ne-1\Leftrightarrow\dfrac{m-2}{4-m}\ne-1\Leftrightarrow m-2\ne m-4\Leftrightarrow-2\ne-4\forall m\)
ket luan : m khac 4