Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này mình đã giải rồi nhé, bạn tìm ở câu hỏi tương tự nhé! Mình sẽ giải lại
Giải:
Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\c+b=-a\end{matrix}\right.\)
Gắn các giá trị vào từng biểu thức, ta được:
\(M=a\left(a+b\right)\left(a+c\right)\)
\(\Leftrightarrow M=a\left(-c\right)\left(-b\right)\)
\(\Leftrightarrow M=abc\left(1\right)\)
\(N=b\left(b+c\right)\left(b+a\right)\)
\(\Leftrightarrow N=b\left(-a\right)\left(-c\right)\)
\(\Leftrightarrow N=abc\left(2\right)\)
\(P=c\left(c+a\right)\left(c+b\right)\)
\(\Leftrightarrow P=c\left(-b\right)\left(-a\right)\)
\(\Leftrightarrow P=abc\left(3\right)\)
Từ (1), (2) và (3) ta có đpcm
Vậy ...
Ta có: a+b+c=0(gt)
=> a+b=-c ; a+c=-b ; b+c=-a
M= a(a+b)(a+c)= a(-c)(-b)=abc
N = b(b+c)(b+a)=b(-a)(-c)=abc
P=c(c+a)(c+b)= c(-b)(-a)=abc
=> M=N=P
ta có: a + b + c = 0
=> a + b = -c ; a + c = -b ; b + c = -a
=> M = a(a + b)(a + c) = a(-c)(-b)= abc
N = b(b + c)(b + a) = b(-a)(-c)= abc
P = c(c + b)(c + a) = c(-a)(-b)= abc
=> M = N = P
ok nha!!! 5645657567896965345645656756768762345335345435344456
Theo đề bài ta có : a + b + c = 0
=> a + b = 0 - c
=> a + c = 0 - b
=> b + a = 0 - c
=> b + c = 0 - a
=> c + a = 0 - b
=> c + b = 0 - a
Thay vào biểu thức trên ta có :
M= a(a+b)(a+c) = a ( 0 - c ) ( 0 - b ) = tự làm típ rùi = 0 - 0 + abc = abc
Tương tự N= b(b+c)(b+a) =
P=c(c+b)(c+a) =
Rùi kết luận nha
Bài 1 . Đã gửi rồi nhé .
Bài 2 . \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\) ⇔ \(\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
⇔ \(a^2+2ad+d^2-b^2-2bc-c^2=a^2-2ad+d^2-b^2+2bc-c^2\)
⇔ \(4ad=4bc\)
⇔ \(\dfrac{a}{c}=\dfrac{b}{d}\left(Đpcm\right)\)
Ta có: \(a+b+c=0\)
=> \(a+b=-c;a+c=-b;b+c=-a\)
Do đó:
\(M=a\left(a+b\right)\left(a+c\right)=a\left(-c\right)\left(-b\right)=abc\)
\(N=b\left(b+c\right)\left(b+a\right)=b\left(-a\right)\left(-c\right)=abc\)
\(P=c\left(c+a\right)\left(c+b\right)=c\left(-b\right)\left(-a\right)=abc\)
=> M=N=P ( = abc)
Ta có : a + b + c = 0
=> a + b = -c ; a + c = -b ; b + c = -a
Thế vào M, N, P :
=> M = a.(-c).(-b) = -abc
N = b.(-a).(-c) = -abc
P = c.(-b).(-a) = -abc
Vậy M = N = P.
a) Ta có:
\(a-b=c+d\)
\(\Rightarrow a-b-c-d=0\)
\(\Rightarrow2a\left(a-b-c-d\right)=0\)
\(\Rightarrow2a^2-2ab-2ac-2ad=0\)
Do đó:
\(a^2+b^2+c^2+d^2\)
\(=a^2+b^2+c^2+d^2+2a^2-2ab-2ac-2ad\)
\(=\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)\)
\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2\)
Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương
b) Ta có:
\(a+b+c+d=0\)
\(\Rightarrow a+b+c=-d\)
\(\Rightarrow a^2+ab+ac=-da\)
\(\Rightarrow bc-da=a^2+ab+ac+bc\)
\(\Rightarrow bc-da=a\left(a+b\right)+c\left(a+b\right)\)
\(\Rightarrow bc-da=\left(a+b\right)\left(a+c\right)\left(1\right)\)
Ta lại có:
\(a+b+c+d=0\)
\(\Rightarrow a+b+c=-d\)
\(\Rightarrow ac+bc+c^2=-dc\)
\(\Rightarrow ab-cd=ac+bc+c^2+ab\)
\(\Rightarrow ab-cd=c\left(a+c\right)+b\left(a+c\right)\)
\(\Rightarrow ab-cd=\left(a+c\right)\left(b+c\right)\left(2\right)\)
Ta lại có:
\(a+b+c+d=0\)
\(\Rightarrow a+b+c=-d\)
\(\Rightarrow ab+b^2+bc=-db\)
\(\Rightarrow ca-db=ca+ab+b^2+bc\)
\(\Rightarrow ca-db=a\left(b+c\right)+b\left(b+c\right)\)
\(\Rightarrow ca-db=\left(b+c\right)\left(a+b\right)\left(3\right)\)
Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:
\(\left(ab-cd\right)\left(bc-da\right)\left(ca-db\right)\)
\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\)
\(=\left(a+c\right)^2.\left(b+c\right)^2.\left(a+b\right)^2\)
\(=\left[\left(a+c\right)\left(b+c\right)\left(a+b\right)\right]^2\)
Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương
@Yukru Cậu giỏi quá! Cảm ơn cậu nhiều. Chắc cậu năm nay 8 lên 9 rồi nhỉ?
Bài làm:
Ta có: \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Thay vào ta được: \(\hept{\begin{cases}M=a\left(-c\right)\left(-b\right)=abc\\N=b\left(-a\right)\left(-c\right)=abc\\P=c\left(-b\right)\left(-a\right)=abc\end{cases}}\)
\(\Rightarrow M=N=P\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;a+c=-b;b+c=-a\)
THAY \(a+b=-c;a+c=-b;b+c=-a\)VÀO M;N;P TA CÓ:
\(M=a.\left(-c\right).\left(-b\right)=a.b.c\)(1)
\(N=b.\left(-a\right).\left(-c\right)=a.b.c\)(2)
\(P=c.\left(-b\right).\left(-a\right)=a.b.c\)(3)
Từ (1) ; (2) ; (3) Ta có
\(M=N=P\left(=a.b.c\right)\)(đpcm)
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
Giải:
Từ đẳng thức \(a+b+c=0\), ta có:
\(\left\{{}\begin{matrix}a=-b-c\\b=-a-c\\c=-a-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)
Thay vào từng biểu thức, ta được;
\(M=a\left(a+b\right)\left(a+c\right)\)
\(\Leftrightarrow M=a\left(-c\right)\left(-b\right)\)
\(\Leftrightarrow M=abc\) (*)
\(N=b\left(b+c\right)\left(b+a\right)\)
\(\Leftrightarrow N=b\left(-a\right)\left(-c\right)\)
\(\Leftrightarrow N=abc\) (**)
\(P=c\left(c+a\right)\left(c+b\right)\) (Sửa đề)
\(\Leftrightarrow P=c\left(-b\right)\left(-a\right)\)
\(\Leftrightarrow P=abc\) (***)
Từ (*), (**) và (***) \(\Rightarrow M=N=P\)
Vậy ...
P=c(c+a)(c+b) chứ bạn ?