Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để so sánh, ta xét hiệu a/b và a+n/b+n có: \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)
ta có mẫu gồm các số >0 => mẫu dương. n>0. nếu a>b => a-b>0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\). nếu a<b <=> a-b<0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}
nếu a/b<1 => a/b< a+n/ b+n
nếu a/b>1=> a/b> a+n/ b+n
còn các câu áp dụng thì tự làm nhé
Số nguyên a là số hữu tỉ vì ta có thể viết a = \(\frac{a}{1}\)
3. Với a, b ∈ Z, b # 0
- Khi a, b cùng dấu thì a/b > 0
- Khi a, b khác dấu thì a/b < 0
Kết luận: Số hữu tỉ a/b (a, b ∈ Z, b # 0) dương nếu a, b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0.
‐ Ta có trên trục số \(2\) điểm \(A\) và \(B\) lần lượt là :\(\frac{a}{b},\frac{c}{d}\)
mà trên trục số\(\frac{a}{b}\) nằm bên trái\(\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}\)
‐ Như ta đã biết : Nếu\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Mà kí hiệu\(\frac{a+c}{b+d}\) là \(C\)
Vậy ta luôn có \(C\) nằm giữa \(A,B\)
\(\Rightarrow\) Trên trục số,giữa \(2\) điểm biểu diễn \(2\) số hữu tỉ \(\frac{a}{b}\) và\(\frac{c}{d}\)
luôn tồn tại \(1\) điểm biểu diễn số hữu tỉ khác \(\left(DPCM\right)\)
NHỚ TK MK NHA
CÁCH 2 NÈ
+) Nếu\(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow2.\frac{a}{b}>\frac{a}{b}+\frac{c}{d}>2.\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}>\frac{\frac{a}{b}+\frac{c}{d}}{2}>\frac{c}{d}\)
\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm \(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(1\right)\)
Tương tự:
+)Nếu\(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{\frac{a}{b}+\frac{c}{d}}{2}< \frac{c}{d}\)
\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm\(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(2\right)\)
Từ\(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\)trên trục số giữa hai điểm hữu tỉ tùy ý a/b và c/d ( a,b,c, d thuộc z ;b,d khác 0)luôn tồn tại một điểm hữu tỉ khác.
NHỚ TK MK NHA
\(\dfrac{a}{b}=\dfrac{a\left(b+2021\right)}{b\left(b+2021\right)}=\dfrac{ab+2021a}{b\left(b+2021\right)}\\ \dfrac{a+2021}{b+2021}=\dfrac{ab+2021b}{b\left(b+2021\right)}\)
Vì \(b>0\Rightarrow b\left(b+2021\right)>0\)
Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2021}{b+2021}\)
Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2021}{b+2021}=1\)
Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2021}{b+2021}\)
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
Ví dụ cho dễ hiểu:
Có 1/3 và 2/3 liền kề nhau.
Nhưng khi nhân cả mẫu và tử lên cùng 1 số:
2/6 và 4/6.
Suy ra ta có 1/2 ở giữa.
Cách chứng minh:
Gọi 2 số hữu tỉ là a/b và (a+1)/b.(cách nhau 1/b)
2a/2b và 2(a+1)/2b
2a/2b và (2a+2)/2b.
=>Ta có (2a+1)/2b ở giữa.
Chúc em học tốt^^
Ví dụ cho dễ hiểu:
Có 1/3 và 2/3 liền kề nhau.
Nhưng khi nhân cả mẫu và tử lên cùng 1 số:
2/6 và 4/6.
Suy ra ta có 1/2 ở giữa.
Cách chứng minh:
Gọi 2 số hữu tỉ là a/b và (a+1)/b.(cách nhau 1/b)
2a/2b và 2(a+1)/2b
2a/2b và (2a+2)/2b.
=>Ta có (2a+1)/2b ở giữa.
Chúc em học tốt^^
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
2/7<4/9,-17/25<-14/28,-31/19<-21/29
a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)
d) \(\frac{2}{7}=\frac{18}{63}\) ; \(\frac{4}{9}=\frac{28}{63}\) Vì 18 < 28 mà 63 = 63
=> \(\frac{2}{7}< \frac{4}{9}\)
\(\frac{-17}{25}=\frac{-476}{700}\) ; \(\frac{-14}{28}=\frac{-350}{700}\) Vì -476 < -350 mà 700=700
=> \(\frac{-17}{25}< \frac{-14}{28}\)