Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(9x^3y^2+3x^2y^2\)
\(=3x^2y^2\cdot3x+3x^2y^2\cdot1\)
\(=3x^2y^2\left(3x+1\right)\)
b: \(x^2-2x+1-y^2\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)
\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)
\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)
\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)
a ) \(\left(3x-1\right)^2+\left(3x+1\right)^2+2\left(3x+1\right)\left(1-3x\right)\)
\(=\left(1-3x\right)^2+\left(3x+1\right)^2+2\left(3x+1\right)\left(1-3x\right)\)
\(=\left(1-3x+3x+1\right)^2\)
\(=2^2=4\)
b ) \(\left(2x-3y\right)^2+\left(2x+3y\right)^2+\left(2x-3y\right)\left(2x+3y\right)\)
\(=4x^2-12xy+9y^2+4x^2+12xy+9y^2+4x^2-9y^2\)
\(=\left(4x^2+4x^2+4x^2\right)+\left(9y^2+9y^2-9y^2\right)+\left(12xy-12xy\right)\)
\(=12x^2+9y^2\)
a,(2x-y)2+(2x+y)2=(2x2-2*2xy+y2)+(2x2+2*2xy+y2)
=2x2-4xy+y2+2x2+4xy+y2
=4x2+2y2
1; \(x^2\) + 3\(x^2\) + 3\(x\) = 4\(x^2\) + 3\(x\) (1)
Thay \(x=99\) vào (1) ta có:
4.992 + 3.99 = 4.9801 + 297 = 39204 + 297 = 39501
Lời giải:
$3x^2+4y^2+12x+3y+5=0$
$\Leftrightarrow 3(x^2+4x+4)+4y^2+3y-7=0$
$\Leftrightarrow 3(x+2)^2+(2y+\frac{3}{4})^2-\frac{121}{16}=0$
$\Leftrightarrow 3(x+2)^2=\frac{121}{16}-(2y+\frac{3}{4})^2\leq \frac{121}{16}$
$\Rightarrow (x+2)^2\leq \frac{121}{48}< 4$
$\Rightarrow -2< x+2< 2$
$\Rightarrow -4< x< 0$
$\Rightarrow x\in \left\{-3; -2; -1\right\}$
Đê đây bạn thay giá trị $x$ vào pt ban đầu để tìm $y$ thôi.
\(= ((2x-3y)+(5x+3y))^2-49 = (8x)^2-49 thế x= 1 vào hoặc phân tích tiếp = (8x-7)(8x+7)\)
\(A=9x^2+6xy+y^2-6xy+y^2=9x^2-2y^2\)