Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 235 \(\times\) 106 - 24255 : ( 240 - a)
Với a - 9 ta có:
A = 235 \(\times\) 106 - 24255 : ( 240 - 9)
A = 24910 - 24255 : 231
A = 24910 - 105
A = 24805
b, A = 235 \(\times\) 106 - 24255 : (240 - a)
A = 24805 - \(\dfrac{24255}{240-a}\) ( a \(\ne\) 240)
Amin ⇔ \(\dfrac{24255}{240-a}\) max
24255 > 0 ⇒ \(\dfrac{24255}{240-a}\) max ⇔ 240 - a = 1 ⇒ a = 239
Vậy Amin = 24805 - 24255 = 550 ⇔ a = 239
Bài giải
Ta có : \(A=\left(n+3\right)\text{ : }n=1+\frac{3}{n}\)
a, A có giá trị lớn nhất khi \(\frac{3}{n}\)đạt GTLN \(\Rightarrow\text{ }n\)đạt GTNN
Có 2 trường hợp : n đạt giá trị âm nhỏ nhất, n đạt giá trị dương nhỏ nhất
* Với n đạt giá trị âm nhỏ nhất \(\Rightarrow\text{ A âm}\)
* Với n đạt giá trị dương nhỏ nhất \(\Rightarrow\text{ A dương}\)
Vì \(A\text{ dương }>A\text{ âm nên A đạt GTLN khi n = 1 }\Rightarrow\text{ }A=4\)
b, Biểu thức \(A=1+\frac{3}{n}\) có giá trị là số tự nhiên khi \(3\text{ }⋮\text{ }n\text{ }\Rightarrow\text{ }n\inƯ\left(3\right)=\left\{\pm1\text{ ; }\pm3\right\}\)
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
\(A=\frac{n+3}{n}\)
\(=1+\frac{3}{n}>1\)
b) Để A là 1 số tự nhiên thì \(\frac{3}{n}\in Z\)
\(\Rightarrow n\inƯ\left(3\right)\)
\(\Rightarrow n\in\left(-1;1;-3;3\right)\)
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
\(A=\left(x-1\right)^2-3\)
a) Với x = -2, ta có:
\(A=\left(-2-1\right)^2-3=6\)
b) \(\left(x-1\right)^2-3\ge3\text{ vì }\left(x-1\right)^2\ge0\forall x\inℝ\)
\(\Rightarrow MIN_A=3\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: \(MIN_A=3\Leftrightarrow x=1\)
Khong chac dau nhe .-.
A=(x-1)2-3
Với x=-2
Ta có:
A=(-2-1)2-3
A=(-3)2-3
A=9-6
A=3
Vậy A=3 với x=-2
b)Tính GTNN của biểu thức A
Để biểu thức A đạt GTNN <=>(x-1)2
<=>(x-1) đạt GTNN
<=>x=1
Vậy với x =1 thì biểu thức A đạt GTNN
Ta có
\(A=\frac{n}{n}+\frac{3}{n}=1+\frac{3}{n}\)
A lớn nhất <=> 3/n lớn nhất <=> n bé nhất khác 0
Mà n\(\in\)N*
=>n=1
Thay vào ta được A=4
Vậy MAXA=4 khi n=1