Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ mà bạn cũng hỏi =(((
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{400}-1\right)\)
\(\Leftrightarrow A=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}....\frac{-399}{400}\)
\(=\frac{1.\left(-3\right)}{2.2}.\frac{2.\left(-4\right)}{3.3}.\frac{3.\left(-5\right)}{4.4}....\frac{19.\left(-21\right)}{20.20}\)
\(=\frac{\left(1.2.3...19\right).\left(\left(-3\right).\left(-4\right).\left(-5\right)...\left(-21\right)\right)}{\left(2.3.4...20\right)\left(2.3.4...20\right)}=\frac{1}{20}.\frac{\left(-21\right)}{2}=\frac{-21}{40}\)
Dễ dàng nhận thấy \(\frac{21}{40}>\frac{1}{2}\Rightarrow\frac{-21}{40}< \frac{-1}{2}\)
Vậy \(A< -\frac{1}{2}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{400}-1\right)\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{399}{400}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{19.21}{20.20}\)
\(=\frac{\left(1.2.3...19\right)\left(3.4.5...21\right)}{\left(2.3.4....20\right)\left(2.3.4....20\right)}\)
\(=\frac{1.21}{20.2}=\frac{21}{40}\)
Dễ thấy \(\frac{21}{40}>\frac{-1}{2}\)
Vậy A > -1/2
Nhầm rồi :v, làm lại
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{400}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot\cdot\cdot\cdot\frac{-399}{400}\)
\(=\frac{1.\left(-3\right)}{2.2}\cdot\frac{2.\left(-4\right)}{3.3}\cdot\cdot\cdot\cdot\frac{19.\left(-21\right)}{20.20}\)
\(=\frac{\left(1.2....19\right).\left[-\left(3.4.5...21\right)\right]}{\left(2.3....20\right)\left(2.3....20\right)}\)
\(=\frac{1.\left(-21\right)}{20.2}=\frac{-21}{40}\)
Dễ thấy \(\frac{21}{40}>\frac{20}{40}\Rightarrow\frac{-21}{40}< \frac{-20}{40}=\frac{-1}{2}\)
Vậy A < -1/2
xét (1/4-1)*(1/9-1)*(1/16-1)*...*(1/400-1)
= \(-\frac{3}{4}\times\frac{-8}{9}\times-\frac{15}{16}\times.....\times-\frac{399}{400}\)
=\(-\frac{3}{2^2}\times\left(\frac{-8}{3^2}\right)\times\left(\frac{-15}{4^2}\right)\times........\times\left(\frac{-399}{20^2}\right)\)
dãy trên có số số hạng là:( 20-2):1+1=19(số hạng)
mà các số đều là các số âm => có 19 số âm nhân vào nhau sẽ ra số âm
Vậy A< 1/2
tk mình nha bạn cũ
a/
\(\left(-\frac{1}{16}\right)^{1000}=\left(-\frac{1}{2^4}\right)^{1000}=\left(-\frac{1}{2}\right)^{4000}.\)
Do \(\left(\frac{1}{2}\right)^{4000}>\left(\frac{1}{2}\right)^{5000}\Rightarrow\left(-\frac{1}{2}\right)^{4000}< \left(-\frac{1}{2}\right)^{5000}\Rightarrow\left(-\frac{1}{16}\right)^{1000}< \left(-\frac{1}{2}\right)^{5000}\)
b/
\(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(4^{300}=\left(4^3\right)^{100}=64^{100}\)
\(\Rightarrow81^{100}>64^{100}\Rightarrow3^{400}>4^{300}\)
Ta có A=\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{400}-1\right)\)
=\(\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-399}{20^2}\)
=\(\frac{-\left(1.3\right)}{2.2}.\frac{-\left(2.4\right)}{3.3}.\frac{-\left(3.5\right)}{4.4}....\frac{-\left(19.21\right)}{20.20}\)
=\(-\left(\frac{1.2.3...19}{2.3.4...20}.\frac{3.4.5...21}{2.3.4...20}\right)\)
=\(-\left(\frac{1}{20}.\frac{21}{2}\right)=-\frac{21}{40}< -\frac{21}{42}=-\frac{1}{2}\)