K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Giải bài tập Toán 11 | Giải Toán lớp 11

- Giả sử Δx là số gia của đối số tại xo = 1. Ta có:

Giải bài tập Toán 11 | Giải Toán lớp 11

- Đường thẳng có hệ số góc bằng f'(1) = 1 có dạng:

y = 1.x + a hay y = x + a

Mà đường thẳng đó đi qua điểm M(1;1/2) nên có: 1/2 = 1 + a ⇒ a = 1/2 - 1 = -1/2

⇒ đường thẳng đi qua M và có hệ số góc bằng 1 là: y = x – 1/2

Ta có đồ thị như trên. Đường thẳng y = x – 1/2 tiếp xúc với đồ thị hàm số f(x) tại M

22 tháng 9 2023

a)

\(\begin{array}{l}f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}{x^2} - \frac{1}{2}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {{x^2} - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{1}{2}\left( {x + 1} \right) = \frac{1}{2}\left( {1 + 1} \right) = 1\end{array}\)

b) Phương trình đường thẳng \(d\) đi qua điểm \(M\left( {1;\frac{1}{2}} \right)\) và có hệ số góc bằng \(k = f'\left( 1 \right) = 1\) là: \(y - \frac{1}{2} = 1\left( {x - 1} \right) \Leftrightarrow y = x - 1 + \frac{1}{2} \Leftrightarrow y = x - \frac{1}{2}\).

 

Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại duy nhất điểm \(M\left( {1;\frac{1}{2}} \right)\).

2 tháng 12 2017

Giải bài tập Toán 11 | Giải Toán lớp 11

b)

+ Đồ thị của hàm số y = f(x) là đường liền nét tại điểm có hoành độ x= 1.

+ Đồ thị hàm số y = g(x) là đường không liền nét tại điểm có hoành độ x= 1.

22 tháng 7 2018

a) Đồ thị hàm số (hình bên).

Bài 3 trang 141 sgk Đại Số 11 | Để học tốt Toán 11

Quan sát đồ thị nhận thấy :

+ f(x) liên tục trên các khoảng (-∞ ; -1) và (-1 ; ∞).

+ f(x) không liên tục tại x = -1.

Bài 3 trang 141 sgk Đại Số 11 | Để học tốt Toán 11

⇒ không tồn tại giới hạn của f(x) tại x = -1.

⇒ Hàm số không liên tục tại x = -1.

22 tháng 9 2023

Ta có bảng sau:

Ta có đồ thị sau:

b, Hai đồ thị \(y=3^x\) và \(y=7\) có \(1\) giao điểm. Vậy số nghiệm của phương trình \(3^x=7\)  là \(1\)

a:

b: Hai đồ thị này có 1 giao điểm

=>Phương trình \(log_4x=5\) có 1 nghiệm duy nhất

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

* Hàm số \(y = {x^2}\)

Nhìn đồ thị ta thấy:

+ \(y(1) = y( - 1) = 1,y(2) = y( - 2) = 4\)

+ Đồ thị hàm số đối xứng qua trục Oy.

* Hàm số \(y = 2x\)

Nhìn đồ thị ta thấy:

+ \(y(1) =  - y( - 1),y(2) =  - y( - 2)\)

+ Đồ thị hàm số đối xứng qua điểm O.

4 tháng 4 2017

a) Các bạn tự vẽ hình nhé . Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).

b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).

+) Nếu x> -1: f(x) = x2 – 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).

+) Tại x = -1;

Ta có =ham-so-lien-tuc= 3(-1) +2 = -1.

ham-so-lien-tuc= (-1)2 – 1 = 0.

ham-so-lien-tucnên không tồn tại ham-so-lien-tuc. Vậy hàm số gián đoạn tại
x0 = -1.

26 tháng 5 2017

TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) D = (10.58, -5.6) D = (10.58, -5.6) D = (10.58, -5.6)

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow+\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{mx-1}{2x+m}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-\dfrac{1}{x}}{2+\dfrac{m}{x}}=\dfrac{m}{2}\)

Vậy: x=m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{mx-1}{2x+m}\)

Để x=m/2 đi qua \(A\left(-1;\sqrt{2}\right)\) thì \(\dfrac{m}{2}=-1\)

=>\(m=-1\cdot2=-2\)

b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{2x-m}=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{2-\dfrac{m}{x}}=\dfrac{1}{2}\)

=>x=1/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)

=>Không có giá trị nào của m để đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x-2}{2x-m}\)