K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

\(\frac{1}{8}.16^n=2^n\)

\(\frac{16^n}{8}=2^n\)

\(\frac{\left(2^4\right)^n}{2^3}=2^n\)

\(\frac{2^{4n}}{2^3}=2^n\)

=> 23=24n:2n

23=23n

=> 3n=3

=> n=1

12 tháng 2 2019

\(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2018}=0\)

Ta  có \(\left|2x-27\right|^{2017}\ge0\forall x;\left(3y+10\right)^{2018}\ge0\forall y\)

\(\Rightarrow\left|2x-27\right|^{2017}+\left(3.y+10\right)^{2018}\ge0\forall x;y\)

\(\Rightarrow\left|2x-17\right|^{2017}+\left(3y+10\right)^{2018}=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-17=0\\3.y+10=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{17}{2}\\y=-\frac{10}{3}\end{cases}}\)

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11

 

1)Số cặp ( x;y ) nguyên thỏa mãn (x^2-2)^6+y^4=1 là....2)Số các phân số a/b thỏa mãn a,b (thuộc) n a/b = 37/40; a+b < 1000 và a+b (thuộc) B(33) là....3)Số tự nhiên n nhỏ nhất để 1/n+3 ; 2/n+4 ; 3/n+5 ;......; 98/n+100 =4)Cho tam giac ABC, M là trung điểm của AB. Trên AC lấy điểm N sao cho CN=1/4AC. Diện tích tứ giác BMNC bằng... diện tích tam giác AMN5)Số tự nhiên nhỏ nhất có 5 chữ số thỏa mãn phân số...
Đọc tiếp

1)Số cặp ( x;y ) nguyên thỏa mãn (x^2-2)^6+y^4=1 là....

2)Số các phân số a/b thỏa mãn a,b (thuộc) n a/b = 37/40; a+b < 1000 và a+b (thuộc) B(33) là....

3)Số tự nhiên n nhỏ nhất để 1/n+3 ; 2/n+4 ; 3/n+5 ;......; 98/n+100 =

4)Cho tam giac ABC, M là trung điểm của AB. Trên AC lấy điểm N sao cho CN=1/4AC. Diện tích tứ giác BMNC bằng... diện tích tam giác AMN

5)Số tự nhiên nhỏ nhất có 5 chữ số thỏa mãn phân số (2n+7)/(5n+2)

6)Tìm phân số bằng phân số a/ab, biết rằng phân số đó bằng phân số 1/6a.

7)Cho phân số a/b khác 0 tối giản. Biết rằng nếu cộng tử vào tử, cộng tử vào mẫu thì được phân số bằng nửa phân số đã cho. Tính a-b

8) Cho x,y nguyên thỏa mãn 2/(x^2+y^2+3); 3/(x^2+y^2+4);...; 18/(x^2+y^2+19) là các phân số tối giản. Tổng của x^2 và y^2 nhỏ nhất có thể là...

9)Có ... STN n thỏa mãn giá trị phân số (n+10)/(2n-8) nguyên

10)Cho phân số A= (23+22+21+...+13)/(11+10+9+...+1). Có tất cả ... cách xóa một số hạng ở tử và một số hạng ở mẫu của A để được một phân sô mới có giá trị bằng A

1
10 tháng 3 2016

Cau 1 : 2 !nhe bn hien

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)