Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}+\frac{1}{100\cdot101}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1+1-\frac{1}{101}=2-\frac{1}{101}=1\frac{100}{101}=\frac{201}{101}\)
=1+1/1-1/2+1/2-1/3+1/3-1/+1/4-1/5+...+1/99-1/100+1/100-1/101
=1+1-1/101
=201/101
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
\(3.\)
\(a=-3,75\)
\(b=\frac{15}{-4}=-3,75\)
Vì \(-3,75=-3,75\) nên \(a=b\)
Vậy : \(a=b\)
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
S = 1.2 + 2.3 + 3.4 + ... + n(n + 1)
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n+1).3
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
3S = n(n + 1)(n + 2)
S = n(n + 1)(n + 2) : 3
c, A= 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/100-1/101
A= 1-1/101
A= 100/101
Vậy A= 100/101