Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 6a=x;2b=y;3c=z=>x+y+z=11
áp dụng bất đẳng thức Schwarts ta có:\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+y+z+3}=\frac{9}{14}\)
\(\Leftrightarrow\frac{28}{x+1}+\frac{28}{y+1}+\frac{28}{z+1}\ge\frac{28.9}{14}=18\)
\(\Leftrightarrow\frac{28}{x+1}-1+\frac{28}{y+1}-1+\frac{28}{z+1}-1\ge18-1-1-1=15\)
\(\Leftrightarrow\frac{27-x}{x+1}+\frac{27-y}{y+1}+\frac{27-z}{z+1}\ge15\)
\(\Leftrightarrow\frac{11-x+16}{x+1}+\frac{11-y+16}{y+1}+\frac{11-z+16}{z+1}\ge15\)
\(\Leftrightarrow\frac{y+z+16}{x+1}+\frac{z+x+16}{y+1}+\frac{x+y+16}{z+1}\ge15\)
\(\Leftrightarrow\frac{2b+3c+16}{6a+1}+\frac{6a+3c+16}{2b+1}+\frac{6a+2b+16}{3c+1}\ge15\)
=>đpcm
dấu "=" xảy ra khi \(a=\frac{11}{18};b=\frac{11}{6};c=\frac{11}{9}\)
a) Ta có : \(S_{AMB}=\frac{cz}{2};S_{BMC}=\frac{ax}{2};S_{MAC}=\frac{by}{2}\)
\(\Rightarrow S_{AMB}+S_{BMC}+S_{MAC}=\frac{cz+ax+by}{2}=S_{ABC}\)
\(\Rightarrow ax+by+cz=2S_{ABC}\)(đpcm)
b) Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(ax+by+cz\right)\ge\left(\sqrt{\frac{a}{x}.ax}+\sqrt{\frac{b}{y}.by}+\sqrt{\frac{c}{z}.cz}\right)^2=\left(a+b+c\right)^2\)
\(\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{ax+by+cz}=\frac{2\left(\frac{a+b+c}{2}\right)^2}{\frac{ax+by+cz}{2}}=\frac{2p^2}{S}\)(đpcm)
câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)
vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)
Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)
dcv_new
\(\Sigma\frac{a^2}{pab+qca}\ge\frac{\left(a+b+c\right)^2}{\left(p+q\right)\left(ab+bc+ca\right)}\ge\frac{3}{p+q}\)
2, ta có \(\sqrt{a}=\sqrt{\frac{a}{x}}\cdot\sqrt{x}\)
vậy ta được \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(\sqrt{\frac{a}{x}}\cdot\sqrt{x}+\sqrt{\frac{b}{y}}\cdot\sqrt{y}+\sqrt{\frac{c}{z}}\cdot\sqrt{z}\right)^2\le\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)=S\)
dấu đẳng thức xảy ra khi \(\sqrt{x}:\sqrt{\frac{a}{x}}=\sqrt{y}:\sqrt{\frac{b}{y}}=\sqrt{z}:\sqrt{\frac{c}{z}}\Leftrightarrow\hept{\begin{cases}\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1\\\frac{x}{\sqrt{a}}=\frac{y}{\sqrt{b}}=\frac{z}{\sqrt{c}}\end{cases}}\)
\(\Rightarrow x=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};z=\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
vậy min (x+y+z)=\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\)
Lời giải:
Nếu $x=0$ thì $a=b$. Khi đó:
$x+y+z+xyz=y+z=\frac{b-c}{b+c}+\frac{c-b}{c+b}=0$ (đpcm)
Tương tự: $y=0; z=0$ cũng vậy.
Nếu $xyz\neq 0$:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{(a+b)(b+c)}{(a-b)(b-c)}+\frac{(b+c)(c+a)}{(b-c)(c-a)}+\frac{(a+b)(a+c)}{(a-b)(c-a)}\)
\(=\frac{(a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(a+b)(a+c)(b-c)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab+bc+ac)[(c-a)+(b-c)+(a-b)]+b^2(c-a)+c^2(a-b)+a^2(b-c)}{(a-b)(b-c)(c-a)}\)
\(=\frac{b^2(c-a)+c^2(a-b)+a^2(b-c)}{(a-b)(b-c)(c-a)}=\frac{(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=-1\)
\(\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+1=0\Leftrightarrow \frac{x+y+z+xyz}{xyz}=0\Rightarrow x+y+z+xyz=0\)
Ta có đpcm.
Cái này là BĐT Nesbit lời giải bn tìm trên mạng cũng có mà