K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98

1.a, cho a,b,c và x,y,z là các số khác 0, thỏa mãn đk a+b+c=0, x+y+z=0,\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\). chứng minh rằng: \(a^2x+b^2y+c^2z=0\) b, cho a,b,c là các hằng số và a,b,c≠-1. chứng minh rằng nếu x=by+cz, y=ax+cz, z=ax+by, x+y+z≠0 thì\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) 2. giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\) là các số khác 0 thỏa mãn các đk: \(\frac{a_1}{a_2}+\frac{b_1}{b_2}+\frac{c_1}{c_2}=0\) và...
Đọc tiếp

1.a, cho a,b,c và x,y,z là các số khác 0, thỏa mãn đk a+b+c=0, x+y+z=0,\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\). chứng minh rằng:

\(a^2x+b^2y+c^2z=0\)

b, cho a,b,c là các hằng số và a,b,c≠-1. chứng minh rằng nếu x=by+cz, y=ax+cz, z=ax+by, x+y+z≠0 thì\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)

2. giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\) là các số khác 0 thỏa mãn các đk: \(\frac{a_1}{a_2}+\frac{b_1}{b_2}+\frac{c_1}{c_2}=0\)\(\frac{a_2}{a_1}+\frac{b_2}{b_1}+\frac{c_2}{c_1}=1\)

cmr \(\frac{a\frac{2}{2}}{a\frac{2}{1}}+\frac{b\frac{2}{2}}{b\frac{2}{1}}+\frac{c\frac{2}{2}}{c\frac{2}{1}}=1\)

3. a, biết x,y,z khác 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). tính gt bt

M=\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

b, biết x,y,z khác 0 và x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). cmr

y(\(x^2-yz\))\(\left(1-xz\right)=x\left(1-yz\right)\left(y^2-xz\right)\)

4. cho x,y,z khác 0 và \(\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2xz}+\frac{x^2+y^2-z^2}{2xy}=1\)

chứng minh rằng trong 3 phân thức đã cho có 1 phân thức bằng -1 và hai phân thức còn lại đều bằng 1

5
AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 1:

a) Từ đkđb:

$x+y+z=0\Rightarrow x+y=-z; y+z=-x; z+x=-y$

$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow xbc+yac+zab=0$

$a+b+c=0\Rightarrow a=-(b+c)\Rightarrow a^2=(b+c)^2$

$\Rightarrow a^2x=(b+c)^2x$.

Tương tự: $b^2y=(a+c)^2y; c^2z=(a+b)^2z$

Do đó:

$a^2x+b^2y+c^2z=(b+c)^2x+(a+c)^2y+(a+b)^2z=a^2(y+z)+b^2(z+x)+c^2(x+y)+2(xbc+yac+zab)$

$=a^2(-x)+b^2(-y)+c^2(-z)+2.0=-(a^2x+b^2y+c^2z)$

$\Rightarrow 2(a^2x+b^2y+c^2z=0$

$\Rightarrow a^2x+b^2y+c^2z=0$ (đpcm)

b)

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \frac{x+y+z}{2}=ax+by+cz\)

\(\Rightarrow \left\{\begin{matrix} ax=\frac{x+y+z}{2}-x=\frac{y+z-x}{2}\\ by=\frac{x+y+z}{2}-y=\frac{x+z-y}{2}\\ cz=\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=\frac{y+z-x}{2x}\\ b=\frac{x+z-y}{2y}\\ c=\frac{x+y-z}{2z}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+1=\frac{y+z+x}{2x}\\ b+1=\frac{x+z+y}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\) (đpcm)

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 2:
Đặt $\frac{a_2}{a_1}=x; \frac{b_2}{b_1}=y; \frac{c_2}{c_1}=z$

Khi đó bài toán trở thành: Cho $x,y,z\neq 0$ thỏa mãn \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\)

CMR: $x^2+y^2+z^2=1$

-----------------------------------

Thật vậy:

Ta có: \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+yz+xz=0\\ x+y+z=1\end{matrix}\right.\)

Khi đó: $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=1^2-2.0=1$ (đpcm)

Vậy........

27 tháng 1 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)nhân lần lượt với x; y; z, ta có:

\(1+\frac{x}{y}+\frac{x}{z}=0\)(1)

\(1+\frac{y}{z}+\frac{y}{x}=0\)(2)

\(1+\frac{z}{x}+\frac{z}{y}=0\)(3)

Từ: (1); (2) và (3) => \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}+\frac{y}{x}+\frac{z}{y}=-3\)(*)

Mặt khác: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)quy đồng ta có:

\(\frac{\left(xy+yz+zx\right)}{xyz}=0\)hay xy + yz + zx = 0

Hay: \(\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right).\left(xy+yz+zx\right)=0\)

Khai triển, ta có:

\(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{z}{x}+\frac{y}{x}+\frac{z}{y}=0\)

Vậy: \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\right)=3\)

27 tháng 1 2018

hình như bạn lộn r, đề đâu có biểu tính phép tính đó 

4 tháng 3 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\Rightarrow\hept{\begin{cases}xy=-yz-xz\\yz=-xy-xz\\xz=-yz-xy\end{cases}}\)

\(x^2+yz+yz=x^2-xy-xz+yz=x.\left(x-y\right)-z.\left(x-y\right)=\left(x-y\right).\left(x-z\right)\)

tương tự bn phân tích rồi quy đồng về mẫu chung :))

18 tháng 12 2018

Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

Tương tự thay vào mà quy đồng

28 tháng 10 2015

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) =>  (yz + xz + xy) / xyz = 0  => yz + zx + xy = 0 

Ta có : x2 + 2yz = x+ yz + yz = x+ yz - zx - xy = x.(x - z) - y.(x - z) = (x - y).(x - z)

Tương tự, y+ 2xz = y+ xz + xz = y+ xz - xy - yz = y(y - x) + z(x - y) = (x - y)(z - y)

; z+ 2xy = (x - z).(y - z)

Vậy \(A=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(A=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(A=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

7 tháng 5 2017

cảm ơn