K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

Ta có:

\(x+y+z=\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\).

\(x+y+z=\frac{\left(a-b\right)\left(b+c\right)\left(c+a\right)+\left(b-c\right)\left(a+b\right)\left(c+a\right)+\left(c-a\right)\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Ta có:

\(\left(a-b\right)\left(b+c\right)\left(c+a\right)+\left(b-c\right)\left(c+a\right)\left(a+b\right)+\left(c-a\right)\left(a+b\right)\left(b+c\right)\).

\(=\left(c+a\right)\left[\left(a-b\right)\left(b+c\right)+\left(b-c\right)\left(a+b\right)\right]+\left(c-a\right)\left(a+b\right)\left(b+c\right)\).

\(=\left(c+a\right)\left(ab+ac-b^2-bc+ab+b^2-ac-bc\right)\)\(+\left(c-a\right)\left(ab+ac+b^2+bc\right)\).

\(=\left(c+a\right)\left(2ab-2bc\right)-\left(a-c\right)\left(ab+ac+b^2+bc\right)\).

\(=2b\left(c+a\right)\left(a-c\right)-\left(a-c\right)\left(ab+ac+b^2+bc\right)\).

\(=\left(2bc+2ab\right)\left(a-c\right)-\left(a-c\right)\left(ab+ac+b^2+bc\right)\).

\(=\left(a-c\right)\left(2ab+2bc-ab-ac-b^2-bc\right)\).

\(=\left(a-c\right)\left(ab+bc-b^2-ac\right)=\left(a-c\right)\left[\left(ab-b^2\right)-\left(ac-bc\right)\right]\).

\(=\left(a-c\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]=\left(a-c\right)\left(a-b\right)\left(b-c\right)\).
Do đó\(x+y+z=\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\).

Mà \(xyz=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)nên:

\(x+y+z=-xyz\).

\(\Rightarrow x+y+z+xyz=0\)(điều phải chứng minh).

24 tháng 12 2018

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)

\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)

7 tháng 4 2019

a ) Đặt A = \(\frac{-a+b+c}{2a}+\frac{a-b+c}{2b}+\frac{a+b-c}{2c}=\frac{1}{2}\left(-1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}-1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}-1\right)\)

\(=\frac{1}{2}\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}-3\right)\)

Do a ; b ; c > 0 , áp dụng BĐT Cô - si cho các cặp số dương , ta có :

\(A\ge\frac{1}{2}\left[2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{b}{c}.\frac{c}{b}}+2\sqrt{\frac{a}{c}.\frac{c}{a}}-3\right]=\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

b ) \(P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\frac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\frac{3}{2}\)

( áp dụng BĐT Cauchy - Schwarz )

Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)

12 tháng 6 2017

Ta có :

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{x}{a}.\frac{y}{b}+2.\frac{x}{a}.\frac{z}{c}+2.\frac{y}{b}.\frac{z}{c}=1\)(1)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

Ta lại có :\(2\frac{x}{a}\frac{y}{b}+2\frac{x}{a}\frac{z}{c}+2\frac{y}{b}\frac{z}{c}=\frac{2\left(cxy+bxy+ayz\right)}{abc}=\frac{2.0}{abc}=0\) (2)

Thay (2) vào (1) ta được :\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+0=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\) (đpcm)

21 tháng 7 2020

a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)

Dấu "=" xảy ra <=> a=b

Áp dụng BĐT (*) vào bài toán ta có:

\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Tiếp tục áp dụng BĐT (*) ta có:

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

21 tháng 7 2020

b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:

\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)

Cộng theo vế 3 BĐT ta có:

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra <=> a=b=c

5 tháng 7 2016

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy+ayz+bxz}{abc}\right)=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{0}{abc}=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.0=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(dpcm\right)\)

Chúc bạn học tốt 

1 cái T I C K nha cảm ơn

1.a, cho a,b,c và x,y,z là các số khác 0, thỏa mãn đk a+b+c=0, x+y+z=0,\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\). chứng minh rằng: \(a^2x+b^2y+c^2z=0\) b, cho a,b,c là các hằng số và a,b,c≠-1. chứng minh rằng nếu x=by+cz, y=ax+cz, z=ax+by, x+y+z≠0 thì\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) 2. giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\) là các số khác 0 thỏa mãn các đk: \(\frac{a_1}{a_2}+\frac{b_1}{b_2}+\frac{c_1}{c_2}=0\) và...
Đọc tiếp

1.a, cho a,b,c và x,y,z là các số khác 0, thỏa mãn đk a+b+c=0, x+y+z=0,\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\). chứng minh rằng:

\(a^2x+b^2y+c^2z=0\)

b, cho a,b,c là các hằng số và a,b,c≠-1. chứng minh rằng nếu x=by+cz, y=ax+cz, z=ax+by, x+y+z≠0 thì\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)

2. giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\) là các số khác 0 thỏa mãn các đk: \(\frac{a_1}{a_2}+\frac{b_1}{b_2}+\frac{c_1}{c_2}=0\)\(\frac{a_2}{a_1}+\frac{b_2}{b_1}+\frac{c_2}{c_1}=1\)

cmr \(\frac{a\frac{2}{2}}{a\frac{2}{1}}+\frac{b\frac{2}{2}}{b\frac{2}{1}}+\frac{c\frac{2}{2}}{c\frac{2}{1}}=1\)

3. a, biết x,y,z khác 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). tính gt bt

M=\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

b, biết x,y,z khác 0 và x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). cmr

y(\(x^2-yz\))\(\left(1-xz\right)=x\left(1-yz\right)\left(y^2-xz\right)\)

4. cho x,y,z khác 0 và \(\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2xz}+\frac{x^2+y^2-z^2}{2xy}=1\)

chứng minh rằng trong 3 phân thức đã cho có 1 phân thức bằng -1 và hai phân thức còn lại đều bằng 1

5
AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 1:

a) Từ đkđb:

$x+y+z=0\Rightarrow x+y=-z; y+z=-x; z+x=-y$

$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow xbc+yac+zab=0$

$a+b+c=0\Rightarrow a=-(b+c)\Rightarrow a^2=(b+c)^2$

$\Rightarrow a^2x=(b+c)^2x$.

Tương tự: $b^2y=(a+c)^2y; c^2z=(a+b)^2z$

Do đó:

$a^2x+b^2y+c^2z=(b+c)^2x+(a+c)^2y+(a+b)^2z=a^2(y+z)+b^2(z+x)+c^2(x+y)+2(xbc+yac+zab)$

$=a^2(-x)+b^2(-y)+c^2(-z)+2.0=-(a^2x+b^2y+c^2z)$

$\Rightarrow 2(a^2x+b^2y+c^2z=0$

$\Rightarrow a^2x+b^2y+c^2z=0$ (đpcm)

b)

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \frac{x+y+z}{2}=ax+by+cz\)

\(\Rightarrow \left\{\begin{matrix} ax=\frac{x+y+z}{2}-x=\frac{y+z-x}{2}\\ by=\frac{x+y+z}{2}-y=\frac{x+z-y}{2}\\ cz=\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=\frac{y+z-x}{2x}\\ b=\frac{x+z-y}{2y}\\ c=\frac{x+y-z}{2z}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+1=\frac{y+z+x}{2x}\\ b+1=\frac{x+z+y}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\) (đpcm)

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 2:
Đặt $\frac{a_2}{a_1}=x; \frac{b_2}{b_1}=y; \frac{c_2}{c_1}=z$

Khi đó bài toán trở thành: Cho $x,y,z\neq 0$ thỏa mãn \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\)

CMR: $x^2+y^2+z^2=1$

-----------------------------------

Thật vậy:

Ta có: \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+yz+xz=0\\ x+y+z=1\end{matrix}\right.\)

Khi đó: $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=1^2-2.0=1$ (đpcm)

Vậy........

12 tháng 2 2020

Tham khảo:

Câu hỏi của Tăng Thiện Đạt

link:https://olm.vn/hoi-dap/detail/55826260313.html

Ib đưa link

12 tháng 2 2020

Từ \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{xz}{ac}+\frac{yz}{bc}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\frac{cxy+bxz+ayz}{abc}=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)