K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)

\(=\frac{-5x-5y-5z}{21}\)

\(=\frac{-5\left(x+y+z\right)}{21}\)

Do  \(x+y=-z\) =>    \(x+y+z=0\)

Như vậy  \(A=0\)

26 tháng 2 2023

a) \(2x=5y\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{5+2}=\dfrac{-21}{7}=-3\)

Khi đó: \(\left\{{}\begin{matrix}\dfrac{x}{5}=-3\\\dfrac{y}{2}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3.5=-15\\y=-3.2=-6\end{matrix}\right.\)

\(\Rightarrow O=x^2-xy+2y=\left(-3\right)^2-\left(-15\right).\left(-6\right)+2.\left(-6\right)=9-90-12=-93\)

b)

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

\(\Rightarrow2k.5k=90\\ \Leftrightarrow10k^2=90\\ \Leftrightarrow k^2=9\\ \Leftrightarrow\left[{}\begin{matrix}k=-3\\k=3\end{matrix}\right.\)

Nếu k = -3

\(\Rightarrow\left\{{}\begin{matrix}x=-3.2=-6\\y=-3.5=-15\end{matrix}\right.\)

\(\Rightarrow Q=-93\)

Nếu k = 3

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.5=15\end{matrix}\right.\)

\(\Rightarrow Q=6^2-6.15+2.15=-24\)

18 tháng 7 2016

4) xy-5x+y=10

 => x(y-5)+(y-5)=15

=> (y-5)(x-1)=15

từ đây lập bảng ra nhé , chắc bạn biết 

28 tháng 12 2020

+) 2x = 3y => \(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\)   (1)

     5x = 7z => \(\dfrac{x}{7}=\dfrac{z}{5}\Rightarrow\dfrac{x}{21}=\dfrac{z}{15}\)   (2)

Từ (1) và (2) => \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)

Áp dụng tính chất DTSBN : \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\cdot21=15,75\\y=\dfrac{3}{4}\cdot14=10,5\\z=\dfrac{3}{4}\cdot15=11,25\end{matrix}\right.\)

+) Áp dụng tính chất DTSBN : \(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot19=38\\y=2\cdot21=42\end{matrix}\right.\)

28 tháng 12 2020

a) Ta có: \(2x=3y\)

nên \(\dfrac{x}{3}=\dfrac{y}{2}\)

\(\Leftrightarrow\dfrac{x}{21}=\dfrac{y}{14}\)(1)

Ta có: 5x=7z

nên \(\dfrac{x}{7}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{x}{21}=\dfrac{z}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)

hay \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}\)

mà 3x-7y+5z=30

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x}{63}=\dfrac{3}{4}\\\dfrac{7y}{98}=\dfrac{3}{4}\\\dfrac{5z}{75}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{169}{4}\\7y=\dfrac{147}{2}\\5z=\dfrac{225}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{169}{12}\\y=\dfrac{21}{2}\\z=\dfrac{45}{4}\end{matrix}\right.\)

Vậy: (x,y,z)=\(\left(\dfrac{169}{12};\dfrac{21}{2};\dfrac{45}{4}\right)\)

b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\)

nên \(\dfrac{2x}{38}=\dfrac{y}{21}\)

mà 2x-y=34

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)

Vậy: (x,y)=(38;42)

21 tháng 9 2016

a) Giải:

Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)

\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{-28}{14}=-2\)

+) \(\frac{5x}{50}=-2\Rightarrow x=-20\)

+) \(\frac{y}{6}=-2\Rightarrow y=-12\)

+) \(\frac{2z}{42}=-2\Rightarrow z=-42\)

Vậy x = -20, y = -12, z = -42

b) Giải:

Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\) 

           \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)

+) \(\frac{x}{10}=8\Rightarrow x=80\)

+) \(\frac{y}{15}=8\Rightarrow y=120\)

+) \(\frac{z}{21}=8\Rightarrow z=168\)

Vậy x = 80, y = 120, z = 168

21 tháng 9 2016

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)

\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=-\frac{28}{14}=-2\)

\(\Rightarrow\begin{cases}\frac{x}{10}=-2\rightarrow x=\left(-2\right)\cdot10=-20\\\frac{y}{6}=-2\rightarrow y=\left(-2\right)\cdot6=-12\\\frac{z}{21}=-2\rightarrow z=\left(-2\right)\cdot21=-42\end{cases}\)

b) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)

\(\Rightarrow\begin{cases}\frac{x}{10}=8\rightarrow x=8\cdot10=80\\\frac{y}{15}=8\rightarrow y=8\cdot15=120\\\frac{z}{21}=8\rightarrow z=8\cdot21=168\end{cases}\)

31 tháng 12 2021

a: f(2)=10-7=3

f(-3)=-15-7=-22