K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2022

`Answer:`

undefined

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)

1 tháng 5 2020

Bài tập 2:

a/ A + (x2 - 2xy + y2) = x2 +2xy + y2

=> A = (x2 + 2xy + y2) - (x2 - 2xy + y2)

=> A = x2 + 2xy + y2 - x2 + 2xy - y2

=> A = (x2 - x2) + (2xy + 2xy) + (y2 - y2)

=> A = 0 + (2 + 2). xy + 0

=> A = 4xy

b/ B - (x2y-3xy2 +5) = 3x2 + 1 + 4x2y

=> B = (3x2 + 1 + 4x2y) + (x2y-3xy2 +5)

=> B = 3x2 + 1 + 4x2y + x2y - 3xy2 + 5

=> B = (1 + 5) + (4x2y - x2y) + 3x2 - 3xy2

=> B = 6 + 3x2y + 3x2 - 3xy2

D - 9x + 2y3 - 7x3y2 - 4x5y + 1 = 0

=> D = 0 + 9x + 2y3 - 7x3y2 - 4x5y + 1

=> D = 9x + 2y3 - 7x3y2 - 4x5y + 1

P.s: Lần sau bạn đăng 1 câu hỏi/ bài đăng thôi nhé! Và nhớ dùng công thức trực quan!

13 tháng 3 2018

trả lời hộ với mai thi rồi

\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)

\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)

17 tháng 3 2019

a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)

= 3x2-2xy+y2+x2-xy+2y2-4x2+y2

= 4y2-3xy

b, = x2-y2+2xy-x2-xy-2y2+4xy-1

= -3y2+5xy

c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2

4 tháng 8 2020

a/ \(\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=-3xy+4y^2\)

b/ \(\left(x^2-y^2+2xy\right)-\left(x^2+xy+2y^2\right)+\left(4xy-1\right)\)

\(=x^2-y^2+2xy-x^2-xy-2y^2+4xy-1\)

\(=-3y^2+5xy-1\)

a) \(\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=4y^2-3xy\)

b) \(\left(x^2-y^2+2xy\right)-\left(x^2+xy+2y^2\right)+\left(4xy-1\right)\)

\(=x^2-y^2+2xy-x^2-xy-2y^2+4xy-1\)

\(=-3y^2+5xy-1\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

29 tháng 7 2019

toan lop 8 nha minh kik nham