Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
\(30A=\frac{30^{32}+30}{30^{32}+1}=\frac{30^{32}+1+29}{30^{32}+1}=1+\frac{29}{30^{32}+1}\)
\(30B=\frac{30^{33}+30}{30^{33}+1}=\frac{30^{33}+1+29}{30^{33}+1}=1+\frac{29}{30^{33}+1}\)
Vì \(\frac{29}{30^{32}+1}>\frac{29}{30^{33}+1}\) nên \(1+\frac{29}{30^{32}+1}>1+\frac{29}{30^{33}+1}\Rightarrow30A>30B\Rightarrow A>B\)
Vậy \(A>B.\)
Chúc bạn học tốt.
1)
a)\(0,\left(32\right)+0,\left(67\right)\)
\(=0,\left(01\right).32+0,\left(01\right).67\)
\(=0,\left(01\right).\left(32+67\right)\)
\(=\frac{1}{99}.99\)
\(=1\left(đpcm\right)\)
b)\(0,\left(33\right).3\)
\(=0,\left(01\right).33.3\)
\(=\frac{1}{99}.33.3\)
\(=\frac{33}{99}.3\)
\(=\frac{99}{99}\)
\(=1\left(đpcm\right)\)
2)\(0,\left(12\right):1,\left(6\right)=x:0,\left(3\right)\)
\(\left[\left(0,01\right).12\right]:\left[1+0,\left(6\right)\right]=x:\left[0,\left(1\right).3\right]\)
\(\left(\frac{1}{99}.12\right):\left[1+0,\left(1\right).6\right]=x:\left(\frac{1}{9}.3\right)\)
\(\frac{4}{33}:\left[1+\frac{1}{9}.6\right]=x:\frac{1}{3}\)
\(\frac{4}{33}:\left[1+\frac{2}{3}\right]=x.3\)
\(3x=\frac{4}{33}:\frac{5}{3}\)
\(3x=\frac{4}{33}\cdot\frac{3}{5}\)
\(3x=\frac{4}{55}\)
\(x=\frac{4}{55}:3\)
\(x=\frac{4}{55}\cdot\frac{1}{3}\)
\(x=\frac{4}{165}\)
Xét 3 số TN liên tiếp \(\left(n-1\right);n;\left(n+1\right)\) ta có
\(\left(n-1\right).n.\left(n+1\right)=n.\left(n^2-1\right)=n^3-n< n^3\)
\(\Rightarrow A\le\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{20.21.22}=\)
\(=\dfrac{1}{2}\left(\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{22-20}{20.21.22}\right)=\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{20.21}-\dfrac{1}{21.22}\right)=\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{21.22}\right)=\dfrac{1}{2^2}-\dfrac{1}{2.21.22}< \dfrac{1}{2^2}\)
3A= 1+ 1/3 + 1/3^2 + ... + 1/3^98
3A-A=1 + 1/3 + 1/3^2 + ... + 1/3^98 - 1/3 - 1/3^2 - 1/3^3 - .... - 1/3^99
2A= 1 - 1/3^99 < 1
=> A < 1/2