Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: 0,(32)+0,(67)
=32/99+67/99
=1
b: \(0.\left(33\right)\cdot3=\dfrac{1}{3}\cdot3=1\)
a) Thay x = 0 vào đa thức P(x) ta được:
\(P(0) = a{.0^2} + b.0 + c = 0 + 0 + c = c\). Vậy \(P(0) = c\).
b) Thay x = 1 vào đa thức P(x) ta được:
\(P(0) = a{.1^2} + b.1 + c = a + b + c\). Vậy \(P(1) = a + b + c\).
c) Thay x = – 1 vào đa thức P(x) ta được:
\(P(0) = a.{( - 1)^2} + b.( - 1) + c = a + ( - b) + c = a - b + c\). Vậy \(P( - 1) = a - b + c\).
|x - 4| + |6 - x| = 0
|x - 4| ; |6 - x| \(\ge\) 0
=> |x - 4| = |6 - x| = 0
|x - 4| = 0 => x= 4
|6 - x| = 0 => x= 6
Vì \(4\ne6\) n ê n không có giá trị của x
Bạn làm các câu khác tương tự
a) 0,(37)+0,(62) = 1
Có 0.(37)=\(\frac{37}{99}\)và 0.(62) = \(\frac{62}{99}\)
\(\frac{37}{99}\)+ \(\frac{62}{99}\)= 1
\(\Rightarrow0,\left(37\right)+0.\left(62\right)=1\)
b)\(0,\left(37\right)\times3=1\)
Có: \(0,\left(37\right)=\frac{37}{99}\)
\(\frac{37}{99}\times3=1\)
\(\Rightarrow0\left(37\right)\times3=1\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
1)
a)\(0,\left(32\right)+0,\left(67\right)\)
\(=0,\left(01\right).32+0,\left(01\right).67\)
\(=0,\left(01\right).\left(32+67\right)\)
\(=\frac{1}{99}.99\)
\(=1\left(đpcm\right)\)
b)\(0,\left(33\right).3\)
\(=0,\left(01\right).33.3\)
\(=\frac{1}{99}.33.3\)
\(=\frac{33}{99}.3\)
\(=\frac{99}{99}\)
\(=1\left(đpcm\right)\)
2)\(0,\left(12\right):1,\left(6\right)=x:0,\left(3\right)\)
\(\left[\left(0,01\right).12\right]:\left[1+0,\left(6\right)\right]=x:\left[0,\left(1\right).3\right]\)
\(\left(\frac{1}{99}.12\right):\left[1+0,\left(1\right).6\right]=x:\left(\frac{1}{9}.3\right)\)
\(\frac{4}{33}:\left[1+\frac{1}{9}.6\right]=x:\frac{1}{3}\)
\(\frac{4}{33}:\left[1+\frac{2}{3}\right]=x.3\)
\(3x=\frac{4}{33}:\frac{5}{3}\)
\(3x=\frac{4}{33}\cdot\frac{3}{5}\)
\(3x=\frac{4}{55}\)
\(x=\frac{4}{55}:3\)
\(x=\frac{4}{55}\cdot\frac{1}{3}\)
\(x=\frac{4}{165}\)