K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

2)

a) \(2\left|2x-3\right|=1\)

=> \(\left|2x-3\right|=1:2\)

=> \(\left|2x-3\right|=\frac{1}{2}\)

=> \(\left[{}\begin{matrix}2x-3=\frac{1}{2}\\2x-3=-\frac{1}{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}2x=\frac{1}{2}+3=\frac{7}{2}\\2x=\left(-\frac{1}{2}\right)+3=\frac{5}{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=\frac{7}{2}:2\\x=\frac{5}{2}:2\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{5}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{7}{4};\frac{5}{4}\right\}.\)

b) \(7,5-3\left|5-2x\right|=-4,5\)

=> \(4,5\left|5x-2\right|=-4,5\)

=> \(\left|5x-2\right|=\left(-4,5\right):4,5\)

=> \(\left|5x-2\right|=-1\)

Ta luôn có: \(\left|x\right|>0\forall x\)

=> \(\left|5x-2\right|>-1\)

=> \(\left|5x-2\right|\ne-1\)

Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.

c) \(\left|3x-4\right|+\left|3y+5\right|=0\)

Ta có: \(\left|3x-4\right|>\) hoặc \(=0\forall x\)

\(\left|3y+5\right|>\) hoặc \(=0\forall y.\)

=> \(\left|3x-4\right|+\left|3y+5\right|=0\)

=> \(\left[{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}3x=0+4=4\\3y=0-5=-5\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=4:3\\y=\left(-5\right):3\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{4}{3}\\y=-\frac{5}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{4}{3}\right\};y\in\left\{-\frac{5}{3}\right\}.\)

Chúc bạn học tốt!

Bài 1:

a) \(-15,5.20,8+3,5.9,2-15,5.9,2+3,5.20,8\)

\(=20,8.\left(-15,5+3,5\right)+9,2.\left(-15,5+3,5\right)\)

\(=\left(-15,5+3,5\right).\left(20,8+9,2\right)\)

\(=\left(-12\right).30=-360\)

b) \(\left[\left(-19,95\right)+\left(-45,75\right)\right]+\left[4,95+5,75\right]\)

\(=\left[\left(-19,95\right)+4,95\right]+\left[\left(-45,75\right)+5,75\right]\)

\(=-15+\left(-40\right)=-55\)

Bài 2 :

\(a,2.\left|2x-3\right|=1\)

\(\Leftrightarrow\left|2x-3\right|=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=\frac{1}{2}\\2x-3=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{1}{2}+3\\2x=-\frac{1}{2}+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{7}{2}\\2x=\frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{5}{4}\end{matrix}\right.\)

Vậy : \(x\in\left\{\frac{7}{4},\frac{5}{4}\right\}\)

\(b,7.5-3\left|5-2x\right|=-4.5\)

\(\Leftrightarrow3.\left|5-2x\right|=7.5-\left(-4.5\right)=12\)

\(\Leftrightarrow\left|5-2x\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{9}{2}\end{matrix}\right.\)

Vậy : \(x\in\left\{\frac{1}{2},\frac{9}{2}\right\}\)

\(c,\left|3x-4\right|+\left|3y+5\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=-\frac{5}{3}\end{matrix}\right.\)

Vậy : \(\left(x,y\right)=\left(\frac{4}{3},-\frac{5}{3}\right)\)

Bài 3 :

a) \(2^{300}\)\(3^{200}\)

Ta có : \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

mà : \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)

Vậy : \(3^{200}>2^{300}\)

b) \(2^{30}+3^{30}+4^{30}\)\(3.2.4^{10}\)

Ta có : \(3.2.4^{10}=6.\left(2^2\right)^{10}=6.2^{20}=3.2^{21}\)

Ta thấy : \(2^{30}>3.2^{21}\Rightarrow2^{30}+3^{30}+4^{30}>3.2^{21}\)

hay : \(2^{30}+3^{30}+4^{30}>3.2.4^{10}\)

Vậy : \(2^{30}+3^{30}+4^{30}>3.2.4^{10}\)

Chúc bạn học tốt !

1 tháng 11 2019

2a) \(\frac{3^6+45^4-15^3.4^5}{27^4.25^3+45^6}\)

\(\frac{3^6+\left(3^2.5\right)^4-\left(3.5\right)^3.\left(2^2\right)^5}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3^2.5\right)^6}\)

\(\frac{3^6+3^8.5^4-3^3.5^3.4^{10}}{3^{12}.5^6-3^{12}.5^6}=\frac{3^3.\left(3^3+3^5.5^4-5^3.4^{10}\right)}{0}\)(xem lại đề)

b)  \(\frac{\left(\frac{2}{5}\right)^7.5^7+\left(\frac{16}{3}\right)^3:\left(\frac{4}{9}\right)^3}{2^7.5^2+512}\)

\(\frac{\left(\frac{2}{5}.5\right)^7+\left(\frac{16}{3}:\frac{4}{9}\right)^3}{2^7.5^2+2^9}\)

\(\frac{2^7+12^3}{2^7\left(5^2+2^2\right)}\)

\(\frac{2^7+\left(2^2.3\right)^3}{2^7.29}\)

\(\frac{2^7+2^6.3^3}{2^7.29}\)

\(\frac{2^6\left(1+27\right)}{2^7.29}=\frac{28}{2.29}=\frac{14}{29}\)

1 tháng 11 2019

mk xin lỗi bn nhé...mk vt nhầm đề...mk vt lại nha:

2a,\(\frac{3^6+45^4-15^3.9^5}{27^4.25^3+45^6}\)

27 tháng 9

         Bài 1:

\(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)

\(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1

-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)

\(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)

  \(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))

 \(x\) = \(\dfrac{3}{14}\)

Vậy \(x=\dfrac{3}{14}\)

 

 

27 tháng 9

Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1

         2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)

         - 5\(x\)    = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\) 

        - 5\(x\)    = \(\dfrac{7}{6}\)

           \(x\)    = \(\dfrac{7}{6}\) : (- 5) 

          \(x\)    = - \(\dfrac{7}{30}\)

Vậy \(x=-\dfrac{7}{30}\)

 

22 tháng 9 2018

* Trả lời:

\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)

\(\Leftrightarrow-3+6x-4-12x=-5x+5\)

\(\Leftrightarrow6x-12x+5x=3+4+5\)

\(\Leftrightarrow x=12\)

\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)

\(\Leftrightarrow6x-15-6+24x=-3x+7\)

\(\Leftrightarrow6x+24x+3x=15+6+7\)

\(\Leftrightarrow33x=28\)

\(\Leftrightarrow x=\dfrac{28}{33}\)

\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)

\(\Leftrightarrow1-3x-6x+12=-4x-5\)

\(\Leftrightarrow-3x-6x+4x=-1-12-5\)

\(\Leftrightarrow-5x=-18\)

\(\Leftrightarrow x=\dfrac{18}{5}\)

\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)

\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)

\(\Leftrightarrow-x-5x=-7\)

\(\Leftrightarrow-6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\)

\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)

\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)

\(\Leftrightarrow-15x+3x=4\)

\(\Leftrightarrow-12x=4\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

21 tháng 7 2017

\(2x+\frac{1}{2}=\frac{-5}{3}\)

\(2x=\frac{-5}{3}-\frac{1}{2}\)

\(2x=\frac{-10}{6}-\frac{3}{6}\)

\(2x=\frac{-13}{6}\)

\(x=\frac{-13}{6}:2\)

\(x=\frac{-13}{12}\)

16 tháng 7 2019

a) |5x - 1| - x = 2x + 3

<=> |5x - 1| = 2x + 3 + x

<=> |5x - 1| = 3x + 3

<=> 5x - 1 = 3x + 3 hoặc 5x - 1 = -(3x + 3)

       5x - 1 - 3x = 3            5x - 1 + 3x = -3

       2x - 1 = 3                   8x - 1 = -3

       2x = 3 + 1                  8x = -3 + 1

       2x = 4                        8x = -2

       x = 2                           x = -2/8 = -1/4

=> x = 2 hoặc x = -1/4

16 tháng 7 2019

b) Ta có: |2x + 1| \(\ge\)\(\forall\)x

        |x - 3| \(\ge\)\(\forall\)x

     |2x+ 3| \(\ge\)0  \(\forall\)x

=> |2x + 1| + |x - 3| + |2x + 3| \(\ge\)\(\forall\)x

=> x - 5 \(\ge\)\(\forall\)x => x \(\ge\)\(\forall\)x

Với x \(\ge\)

=> 2x + 1 + x - 3 + 2x + 3 = x - 5

=> 4x + 1 = x - 5

=> 4x - x = -5 - 1

=> 3x = -6

=> x = -2 (ktm)

Vậy ko có giá trị thõa mãn