K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

a) |5x - 1| - x = 2x + 3

<=> |5x - 1| = 2x + 3 + x

<=> |5x - 1| = 3x + 3

<=> 5x - 1 = 3x + 3 hoặc 5x - 1 = -(3x + 3)

       5x - 1 - 3x = 3            5x - 1 + 3x = -3

       2x - 1 = 3                   8x - 1 = -3

       2x = 3 + 1                  8x = -3 + 1

       2x = 4                        8x = -2

       x = 2                           x = -2/8 = -1/4

=> x = 2 hoặc x = -1/4

16 tháng 7 2019

b) Ta có: |2x + 1| \(\ge\)\(\forall\)x

        |x - 3| \(\ge\)\(\forall\)x

     |2x+ 3| \(\ge\)0  \(\forall\)x

=> |2x + 1| + |x - 3| + |2x + 3| \(\ge\)\(\forall\)x

=> x - 5 \(\ge\)\(\forall\)x => x \(\ge\)\(\forall\)x

Với x \(\ge\)

=> 2x + 1 + x - 3 + 2x + 3 = x - 5

=> 4x + 1 = x - 5

=> 4x - x = -5 - 1

=> 3x = -6

=> x = -2 (ktm)

Vậy ko có giá trị thõa mãn

26 tháng 8 2020

B6:

Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)

=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)

Mà theo đề bài \(5a-3b+2c=0\)

=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)

=> đpcm

26 tháng 8 2020

B5:

Ta có:

P+Q+R

= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7

= x2y2+2y2+7x4+7

Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)

=> \(x^2y^2+2y^2+7x^4+7\ge7\)

=> Tổng 3 đa thức P,Q,R luôn dương

=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0

=> đpcm

Tui chẳng nghĩ gì về số cúp cả

7 tháng 4 2016

trả lời đi t đag cần gấp lắm

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

$x+y-2=0\Rightarrow x+y=2$

a) 

$B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x(x+y)+2x+3$

$=x^3(x+y)+x^3y-2x^3+x^2y^2-2x^2y-2x+2x+3$

$=2x^3+x^3y-2x^3+x^2y^2-2x^2y+3$

$=x^3y+x^2y^2-2x^2y+3$

$=xy(x^2+xy-2x)+3=xy[x(x+y)-2x]+3=xy(2x-2x)+3=3$

b) 

$C=x^3+x^2y-2x^2-xy+y^2-3y-x+5$

$=x^2(x+y)-2x^2-xy+y^2-3(y+x)+2x+5$

$=2x^2-2x^2-xy+y^2-6+2x+5$

$=-xy+y^2+2x-1$

$=y(x+y)+2x-1-2xy=2y+2x-1-2x=2(x+y)-1-2x=3-2x$ (không tính cụ thể được giá trị- bạn xem lại đề)

c) 

$D=2x^4+3x^2y^2+y^4+y^2$

$=(x^4+2x^2y^2+y^4)+x^4+x^2y^2+y^2

$=(x^2+y^2)^2+x^4+x^2y^2+y^2$

$=1+x^2(x^2+y^2)+y^2=1+x^2+y^2=1+1=2$

`@` `\text {Ans}`

`\downarrow`

loading...

loading...

loading...

*Máy tớ cam hơi mờ, cậu thông cảm ._.*

Cậu viết lại rõ đề câu c, nhé.