Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này t dùng máy tính
\(\left(x-2\right)\left(x+3\right)\left(2x+1\right)\left(3x-1\right)=0\)
Đến đây thì pt có 4 nghiệm:\(x=2;-3;-\frac{1}{2};\frac{1}{3}\)
Vậy....
a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã
\(6x^4+5x^3-38x^2+5x+6=0\\ \Leftrightarrow6x^4+20x^3+6x^2-15x^3-50x^2-15x+6x^2+20x+6=0\\ \Leftrightarrow2x^2\left(3x^2+10x+3\right)-5x\left(3x^2+10x+3\right)+2\left(3x^2+10x+3\right)=0\\ \Leftrightarrow\left(3x^2+10x+3\right)\left(2x^2-5x+2\right)=0\\ \Leftrightarrow\left(3x^2+x+9x+3\right)\left(2x^2-x-4x+2\right)=0\\ \Leftrightarrow\left[x\left(3x+1\right)+3\left(3x+1\right)\right]\left[x\left(2x-1\right)-2\left(2x-1\right)\right]=0\\ \Leftrightarrow\left(3x+1\right)\left(x+3\right)\left(2x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+3=0\\2x-1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=-3\\x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath tích mình nha
\(6x^4-5x^3-38x^2-5x+6=0\)
Nhận thấy \(x=0\) không phải là nghiệm, chia cả 2 vế cho \(x^2\):
\(6x^2-5x-38-\dfrac{5}{x}+\dfrac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)-38=0\)
Đặt \(x+\dfrac{1}{x}=a\Rightarrow x^2+\dfrac{1}{x^2}=a^2-2\) pt trở thành:
\(6\left(a^2-2\right)-5a-38=0\)
\(\Leftrightarrow6a^2-5a-50=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{10}{3}\\a=\dfrac{-5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{10}{3}\\x+\dfrac{1}{x}=\dfrac{-5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2-10x+3=0\\2x^2+5x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\\x=-2\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Nhận thấy \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế của pt cho \(x^2\) ta được:
\(6\left(x^2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)-38=0\)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow x^2+\dfrac{1}{x^2}=t^2-2\)
\(\Rightarrow6\left(t^2-2\right)-5t-38=0\)
\(\Leftrightarrow6t^2-5t-50=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{10}{3}\\t=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{10}{3}\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3x^2-10x+3=0\\2x^2+5x+2=0\end{matrix}\right.\)
\(\Rightarrow x=\left\{-2;-\dfrac{1}{2};\dfrac{1}{3};3\right\}\)
X=-2,3,1/3
\(6x^4-5x^3-38x^2-5x+6=0\)
\(\Leftrightarrow6x^4-12x^3+17x^3-34^2-4x^2+8x-3x+6=0\)
\(\Leftrightarrow6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-4x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-x^2-3x-x-3=0\right)\)
\(\Leftrightarrow\left(x-2\right)\left[6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-3x+2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left[6x\left(x-\frac{1}{2}\right)+2\left(x-\frac{1}{2}\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-\frac{1}{2}\right)\left(6x+2\right)=0\)