Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)16. x2 = 64
x2 = 64 : 16
x2 = 4
x2 = 22
⇒ x = 2
b) (5.x - 2) - 64 = -36
(5.x - 2) = -36 + 64
5.x - 2 = 28
5.x = 28 + 2
5.x = 30
x = 30 : 5
x = 6
c) (2x - 10).(5 - x) = 0
TH1: 2x - 10 = 0
2x = 0 + 10
2x = 10
x = 10 : 2
x = 5
TH2: 5 - x = 0
x = 5 - 0
x = 5
⇒ Vậy x = 5.
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-36\ge0\\x^2-81\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-36\le0\\x^2-81\ge0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow36\le x^2\le81\\ \Leftrightarrow-6\le x\le9\)
`x^2=3`
`=>x=\sqrt{3}\or\x=-\sqrt{3}`
`x^2=36`
`<=>x^2=(+-6)^2`
`<=>x=+-6`
`x^2=25`
`<=>x^2=(+-5)^2`
`<=>x=+-5`
`2x^2+(-20)=55`
`<=>2x^2-20=55`
`<=>2x^2=75`
`<=>x^2=75/2`
`<=>x=+-\sqrt{75/2}`
`2(x-1)^2+5^0=9`
`<=>2(x-1)^2+1=9`
`<=>2(x-1)^2=8`
`<=>(x-1)^2=4`
`<=>x-1=2\or\x-1=-2`
`<=>x=3\or\x=-1`
\(\dfrac{\dfrac{36}{41}:\dfrac{9}{41}}{\dfrac{14}{21}:\dfrac{7}{21}}\) \(\times\) \(\dfrac{2}{5}\)
= \(\dfrac{\dfrac{36}{41}\times\dfrac{41}{9}}{\dfrac{14}{21}\times\dfrac{21}{7}}\) \(\times\) \(\dfrac{2}{5}\)
= \(\dfrac{4}{2}\) \(\times\) \(\dfrac{2}{5}\)
= \(\dfrac{4}{5}\)
Bài 1:
a) Ta có: (x2 - 36)(x2 -25)= 0
\(\Leftrightarrow\)(x2 - 62)(x2 - 52)= 0
\(\Leftrightarrow\)(x - 6)(x + 6)(x - 5)(x + 5)= 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\)
\(\orbr{\begin{cases}x-5=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
b) \(CMTT\)câu a
Ta có:\(\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
\(\orbr{\begin{cases}x=8\\x=-8\end{cases}}\)
X2=3 x2=25
=> X=\(\pm\sqrt{3}\) => x=5
X2=36
=> x=6
2.(x-1)2+50= 9
2.(x-1)2+1= 9
2.(x-1)2= 8
(x-1)2 = 8/2
(x-1)2 = 4
(x-1)2 = (2)2
x-1=(\(\pm\)2)
TH1: x-1= 2 TH2: x-1=-2
x=2+1 x =(-2)+1
x= 3 x = -1
Vậy x\(\in\)\(\left\{3;1\right\}\)
ta có : \(\left(x^2+5\right)\left(x^2-25\right)< 0\)
vì \(x^2+5\ge5>0\forall x\) \(\Rightarrow\left(x^2+5\right)\left(x^2-25\right)< 0\) \(\Leftrightarrow x^2-25< 0\)
\(\Leftrightarrow x^2< 25\Leftrightarrow-5< x< 5\)
vậy \(-5< x< 5\)