Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+5^2+5^4+...+5^{40}\)
\(\Rightarrow25A=5^2+5^4+5^6+...+5^{42}\)
Lấy \(25A-A=\left(5^2+5^4+5^6+...+5^{42}\right)-\left(1+5^2+5^4+...+5^{40}\right)\)
\(\Rightarrow24A=5^{42}-1\)
\(\Rightarrow A=\dfrac{5^{42}-1}{24}\)
Lời giải:
a. Ta thấy:
$3+3^2+3^3+...+3^{99}\vdots 3$
$1\not\vdots 3$
$\Rightarrow A=1+3+3^2+...+3^{99}\not\vdots 3$
$\Rightarrow A\not\vdots 9$
b.
$A=(5+5^2)+(5^3+5^4)+...+(5^{39}+5^{40})$
$=5(1+5)+5^3(1+5)+...+5^{39}(1+5)$
$=5.6+5^3.6+....+5^{39}.6$
$=6(5+5^3+...+5^{39})$
$=2.3.(5+5^3+...+5^{39})$
$\Rightarrow A\vdots 2$ và $A\vdots 3$
a) 11070 : {15 . [ 356 – ( 2110 – 2000 )]}
= 11070 : [15(356 – 110)] = 11070 : 3690 = 3
b) 62500 : { 50 2 : [ 112 – ( 52 – 2 3 . 5 )]}
= 62500 : { 2500 : [ 112 – ( 52 – 40 )]}
= 62500 : { 2500 : [ 112 – 12 ]}
= 62500 : { 2500 : 100 }
= 62500 : 25
= 2500
c) 3 3 . 5 3 – 20 . { 300 – [ 540 – 2 3 ( 7 8 : 7 6 + 7 0 )]}
= 3 3 . 5 3 – 20 . {300 – [ 540 – 2 3 (72 + 1 )]
= 3 3 . 5 3 – 20 . [ 300 – (540 - 8 . 50)
= 27 . 125 – 20 . [300 – ( 540 - 400 )]
= 3375 – 20 . ( 300 – 140 )
= 3375 – 20 . 160
= 3375 – 3200
= 175
\(125:5^x+5^2=26\)
\(\Rightarrow125:5^x+25=26\)
\(\Rightarrow125:5^x=26-25\)
\(\Rightarrow125:5^x=1\)
\(\Rightarrow5^x=125:1\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
a) ( 725 + 275 ) : 2 = 1000:2
= 500
b) 1458 x ( 460 + 540 ) = 1458 x 1000
= 1458000
d) (120 + 112 ) + ( 116 + 84 ) = 232 + 200
= 432
725:2+275:2=275
1458x460+1458x540=1458000
52+54+55+56+...+88=2536
120+116+112+84=432
\(5x+2x\cdot\left(2^3\cdot5-3^2\cdot4\right)+5^2=4^3\)
\(\Rightarrow5x+2x\cdot\left(8\cdot5-9\cdot4\right)+25=64\)
\(\Rightarrow5x+2x\cdot\left(40-36\right)=64-25\)
\(\Rightarrow5x+2x\cdot4=39\)
\(\Rightarrow5x+8x=39\)
\(\Rightarrow x\cdot\left(5+8\right)=39\)
\(\Rightarrow13x=39\)
\(\Rightarrow x=\dfrac{39}{13}\)
\(\Rightarrow x=3\)
Vậy: ...
a) \(5^2\cdot3^x=575\)
\(\Rightarrow3^x=\dfrac{575}{5^2}\)
\(\Rightarrow3^x=\dfrac{575}{25}\)
\(\Rightarrow3^x=23\)
Xem lại đề
b) \(5\cdot2^x-7^2=31\)
\(\Rightarrow5\cdot2^x=31+49\)
\(\Rightarrow5\cdot2^x=80\)
\(\Rightarrow2^x=\dfrac{80}{5}\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
c) \(5^x+5^{x+2}=650\)
\(\Rightarrow5^x\cdot\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=\dfrac{650}{26}\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
a, 52 x \(3^x\) = 575
3\(^x\) = 575 : 52
3\(^x\) = 23
nếu \(x\) ≤ 0 ta có 3\(^x\) ≤ 1 < 23 (loại) (1)
Nếu \(x\) ≥ 1 ⇒ 3\(^x\) ⋮ 3 \(\ne\) 23 vì 23 không chia hết cho 3 (2)
kết hợp (1) và(2) ta thấy không có giá trị nào của \(x\) thỏa mãn đề bài
Kết luận: \(x\in\varnothing\)
\(5^x.5^2=5^{40}\)
\(\Rightarrow5^x=5^{40}:5^2=5^{38}\)
=> x = 38
\(5^x\cdot5^2=5^{40}\)
\(\Leftrightarrow x+2=40\)
hay x=38