Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$
$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$
$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$
$=2(x^2+y^2+xy)^2$
Ta có đpcm.
Làm thông thường thoy; khai triển ra xog chuyển vế
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)
\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)
\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)
\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))
Vậy bđt đã đc chứng minh
với mọi a; b :
\(2\left(a^4+b^4+6a^2b^2\right)-\left(a+b\right)^4\)
\(=2a^4+2b^4+12a^2b^2-a^4-b^4-4a^3b-4ab^4-6a^2b^2\)
\(=a^4-4a^3b+6a^2b^2-4ab^3+b^4\)
\(=\left(a-b\right)^4\ge0\)
Vậy ta có điều cần chứng minh.
a) \(a^2+b^2=\left(a+b\right)^2-2ab\)
\(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)\(=a^2+b^2=VT\)
\(\Rightarrowđpcm\)
b)\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)
\(VP=a^4+b^4+2a^2b^2-2a^2b^2=a^4+b^4=VT\)\(\Rightarrowđpcm\)
c) \(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)
\(VP=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)=a^6+b^6\)
\(VP=VT\Rightarrowđpcm\)
d)\(a^6-b^6=\left(a^2-b^2\right)[\left(a^2+b^2\right)^2-a^2b^2]\)
\(VP=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=a^6-b^6=VT\)
\(VP=VT\Rightarrowđpcm\)
\(VT=1.\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)
\(=...=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
a) Sửa đề :
\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)
\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)
\(x^4=\left(a+b\right)^4\)
b) Sửa đề:
\(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)
\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)
\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)
\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)
\(x^5=\left(a+b\right)^5\)
Bạn có thể tự tóm tắt lại
mik đồng ý với Khánh ko làm được thì nói ra đi Hoàng ạ.