K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2015

mik đồng ý với Khánh ko làm được thì nói ra đi Hoàng ạ.

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

Ta có:

$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$

$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$

$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$

$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$

$=2(x^2+y^2+xy)^2$

Ta có đpcm.

14 tháng 1 2018

Làm thông thường thoy; khai triển ra xog chuyển vế

\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)

\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))

Vậy bđt đã đc chứng minh

14 tháng 1 2018

cảm ơn nhiều nha. chúng ta kết bạn được không?

21 tháng 6 2020

với mọi a; b : 

 \(2\left(a^4+b^4+6a^2b^2\right)-\left(a+b\right)^4\)

\(=2a^4+2b^4+12a^2b^2-a^4-b^4-4a^3b-4ab^4-6a^2b^2\)

\(=a^4-4a^3b+6a^2b^2-4ab^3+b^4\)

\(=\left(a-b\right)^4\ge0\)

Vậy ta có điều cần chứng minh.

7 tháng 8 2018

a) \(a^2+b^2=\left(a+b\right)^2-2ab\)

\(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)\(=a^2+b^2=VT\)

\(\Rightarrowđpcm\)

b)\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)

\(VP=a^4+b^4+2a^2b^2-2a^2b^2=a^4+b^4=VT\)\(\Rightarrowđpcm\)

c) ​\(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)

\(VP=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)=a^6+b^6\)

\(VP=VT\Rightarrowđpcm\)

d)\(a^6-b^6=\left(a^2-b^2\right)[\left(a^2+b^2\right)^2-a^2b^2]\)

\(VP=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=a^6-b^6=VT\)

\(VP=VT\Rightarrowđpcm\)

NV
24 tháng 9 2020

\(VT=1.\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)

\(=...=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

8 tháng 8 2020

a) Sửa đề :

\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)

\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)

\(x^4=\left(a+b\right)^4\)

b) Sửa đề:

 \(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)

\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)

\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)

\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)

\(x^5=\left(a+b\right)^5\)

Bạn có thể tự tóm tắt lại