K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

a) Sửa đề :

\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)

\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)

\(x^4=\left(a+b\right)^4\)

b) Sửa đề:

 \(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)

\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)

\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)

\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)

\(x^5=\left(a+b\right)^5\)

Bạn có thể tự tóm tắt lại

21 tháng 7 2016

Hằng đẳng thức bậc cao

21 tháng 7 2016

a, \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)  Hệ thức bình phương tổng ba số

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) Hệ thức lập phương tổng ba số 

7 tháng 8 2020

(1) tào lao

7 tháng 8 2020

(1): (a+b)4=(a+b)3 * (a+b)

sử dụng hằng đẳng thức khai triển (a+b)3 sau đó nhân đa thức đó với (a+b) thì ta được vế phải :>

(2): (a+b)5 = (a+b)3*(a+b)2 

tương tự khai triển thành 2 đa thức rồi nhân vào với nhau là được vế phải :>

25 tháng 10 2017

a) (a + b)4

= [(a + b)2]2

= (a2 + 2ab + b2)2

= [(a2 + 2ab) + b2]2

= (a2 + 2ab)2 + 2(a2 + 2ab)b2 + b4

= a4 + 4a3b + 4a2b2 + 2a2b2 + 4ab3 + b4

= a4 + 4a3b + 6a2b2 + 4ab3 + b4

vậy (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

con a bn chép sai đề bài nên mk sử rồi nhé

b) (a + b)5

= (a + b)2 . (a + b)3

= (a2 + 2ab + b2)(a3 + 3a2b + 3ab2 + b3)

= a5 + 3a4b + 3a3b2 + a2b3 + 2a4b + 6a3b2 + 6a2b3 + 2ab4 + a3b2 + 3a2b3 + 3ab4 + b5

= a5 + (3a4b + 2a4b) + (3a3b2 + 6a3b2+ a3b2) + (a2b3 + 6a2b3 + 3a2b3) + (2ab4 3ab4) + b5

= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

25 tháng 10 2017

hình như sai đề câu a

7 tháng 3 2017

Tam giác Pascal

7 tháng 3 2017

pascal là gì ạ

21 tháng 3 2020

1)\(4\left(a^4-1\right)x=5\left(a-1\right)\)

<=>x=\(\frac{5\left(a-1\right)}{a^4-1}\)

<=>x=\(\frac{5\left(a-1\right)}{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)}=\frac{5}{\left(a+1\right)\left(a^2+1\right)}\)

Tương tự ta tính được y=\(\frac{4a^6+4}{5a^4-5a^2+5}\)

Suy ra x.y=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\cdot\left(a^6+1\right)}{5\left(a^4-a^2+1\right)}\)=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\left(a^2+1\right)\left(a^4-a^2+1\right)}{5\left(a^4-a^2+1\right)}\)

=\(\frac{5}{a+1}\)

Tương tự với x:y

21 tháng 3 2020

\(A=\frac{4.6}{4.2}:\left(\frac{8.10}{6.8}.\frac{12.14}{10.12}.\frac{16.18}{14.16}...\frac{54.56}{54.53}\right)=\frac{6}{2}:\frac{56}{6}=\)

19 tháng 8 2016

1) =(x+2)(x-2)+(x-2)2=(x-2)(x+2+x-2)=2x(x+2)

2)=x(x2-6x+9)=x(x-3)2

3)xem lại đề giúp mik

4)=x4+4x2-4x2+4=(x4+4x2+4)-4x2=(x2+2)2-4x2=(x2+2x+2)(x2-2x+2)

8 tháng 9 2018

\(x^2-4+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2+x-2\right)\)

\(=2x\left(x-2\right)\)