K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

a)Gọi d là ƯCLN(7n+10,5n+7)(\(d\in N\)*)

Ta có:\(7n+10⋮d,5n+7⋮d\)

\(\Rightarrow5\left(7n+10\right)⋮d,7\left(5n+7\right)⋮d\)

\(\Rightarrow35n+50⋮d,35n+49⋮d\)

\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

ƯCLN(7n+10,5n+7)=1 nên 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau

 

30 tháng 10 2021

b: Vì 2n+3 là số lẻ

mà 4n+8 là số chẵn

nên 2n+3 và 4n+8 là hai số nguyên tố cùng nhau

28 tháng 2 2021

Bài 1:Tính cả ước âm thì là số `12`

Bài 2:

Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`

`=>7n+10 vdots d,5n+7 vdots d`

`=>35n+50 vdots d,35n+49 vdots d`

`=>1 vdots d`

`=>d=1`

`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.

Các phần còn lại thì bạn làm tương tự câu a.

10 tháng 10 2021

Thanks,tui cũng đang mắc ở bài 2

26 tháng 10 2021

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

23 tháng 10 2017

22 tháng 11 2015

bạn vào câu hỏi tương tự nha

22 tháng 11 2015

Gọi ƯCLN của 2n+3 và 4n+8 là d (d thuộc N*)

Ta có                     2n+ 3  chia hết cho d

                        4n + 6 chia hết cho d 

                     4n + 8 chia hết cho d

Vậy ( 4n+8 ) - (4n+6) chai hết cho d

      2 chia hết cho d

Ư(2) ={ 1;2}  mà d lẻ => d= 1

Vậy 2n+ 3 và 4n+8 là 2 số nguyên tố cùng nhau

các ý khác cũng tương tự

19 tháng 8 2021

a. Gọi d là ƯCLN ( 7n + 10 ; 5n + 7)

⇒ 7n + 10 chia hết cho d⇔5(7n + 10) chia hết cho d ⇔35n+50 chia hết cho d

và ⇒ 5n + 7 chia hết cho d ⇔ 7(5n + 7) chia hết cho d⇔35n+49 chia hết cho d

⇒35n+50-(35n+49) chia hết cho d⇔1 chia hết cho d⇒d=1

Vậy 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau

b.

Giả sử d là ƯCLN (  2n + 3 ;4n+8) và d là SNT

⇒ 4n + 8 chia hết cho d

và ⇒2n+3 chia hết cho d ⇔ 2(2n+3) chia hết cho d⇔4n+6 chia hết cho d

⇒4n+8-(4n+6) chia hết cho d⇔2 chia hết cho d và 2n+3 là số lẻ⇒d=1

Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau

c.Gọi d là ƯCLN ( 9n + 24 và 3n + 4)

⇒ 9n + 24 chia hết cho d

và ⇒3n + 4 chia hết cho d ⇔ 3(3n+4) chia hết cho d⇔9n+12 chia hết cho d

⇒9n + 24-(9n+12) chia hết cho d⇔12 chia hết cho d và 3n + 4 ko chia hết cho 3 ⇒d=2

Để  9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau thì d≠≠  2

⇒n ko chia hết cho 2

Vậy Nếu n ko chia hết cho 2 thì 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau

d,

a. Gọi d là ƯCLN ( 18n + 3 ; 21n + 7)

⇒ 18n + 3 chia hết cho d⇔7( 18n + 3) chia hết cho d ⇔126n+21 chia hết cho d

và ⇒ 21n + 7 chia hết cho d ⇔ 6(21n + 7) chia hết cho d⇔126n+42 chia hết cho d

⇒126n+42-(126n+21) chia hết cho d⇔21 chia hết cho d⇒d∈{3;7} 

Mà 18n+3 ko chia hết cho 7 và 21n+7 ko chia hết cho 3⇒d=1

Vậy 18n + 3 và 21n + 7 là 2 số nguyên tố cùng nhau

 Ps: nhớ k 

                                                                                                                                                          # Aeri # 

19 tháng 8 2021

giúp mik  vs 

30 tháng 10 2016

Gọi d là ƯCLN(7n+10, 5n+7)

Ta có: 7n+10 chia hết cho d, 5n+7 chia hết cho d

<=>[5(7n+10)-7(5n+7)] chia hết cho d

<=>35n+50-35n+49

<=>1 chia hết cho d

<=> d = 1

các bài còn lại thì giải tương tự

9 tháng 11 2019

a)\(7n+10⋮7n+10\)

\(\Rightarrow5\left(7n+10\right)⋮7n+10\Rightarrow35n+50⋮7n+10\)

\(5n+7⋮5n+7\)

\(\Rightarrow7\left(5n+7\right)⋮5n+7\Rightarrow35n+49⋮5n+7\)

gọi \(UCLN\left(7n+10;5n+7\right)\)là d

\(\Rightarrow35n+50-35n+49⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{\pm1\right\}\)

\(\Rightarrowđpcm\)

8 tháng 11 2015

Mình VD cho bạn 2 bài thôi nha, các câu khác tương tự:

b)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
d Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
d Ư(2) d {1,2}
d = 2 không là ước số của số lẻ 2n+3 d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.

c)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
d Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
d Ư(2) d {1,2}
d = 2 không là ước số của số lẻ 2n+3 d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.