Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
x=2y=3z
=>\(\dfrac{x}{6}=\dfrac{2y}{6}=\dfrac{3z}{6}\)
=>\(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{z}{2}\)
mà 2x+3y+4z=58
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x+3y+4z}{2\cdot6+3\cdot3+4\cdot2}=\dfrac{58}{29}=2\)
=>\(x=6\cdot2=12;y=3\cdot2=6;z=2\cdot2=4\)
\(2x=-3y=4z\Rightarrow\frac{2x}{12}=\frac{-3y}{12}=\frac{4z}{12}\)(Chia mỗi vế cho 12)
\(\Rightarrow\frac{x}{6}=\frac{-y}{4}=\frac{z}{3}\)\(\Rightarrow\frac{x}{6}=-\frac{2y}{8}=\frac{3z}{9}\)
Áp dung t/c dãy tỉ số bằng nhau:
\(\frac{x}{6}=-\frac{2y}{8}=\frac{3z}{9}=\frac{x+\left(-2y\right)-3z}{6+8-9}=\frac{30}{5}=6\)
\(\Rightarrow\hept{\begin{cases}x=6.6=36\\y=6.8:\left(-2\right)=-24\\z=6.9:3=18\end{cases}}\)
Vậy \(x=36;y=-24;z=18\)
từ đây:2x=-3y=4z
=>\(\frac{2x}{12}=-\frac{3y}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{-4}=\frac{z}{3}=\frac{x-2y-3z}{6-\left(-8\right)-9}=\frac{30}{5}=6\)
\(\frac{x}{6}=6\Rightarrow x=36;\frac{y}{-4}=6\Rightarrow y=-24;\frac{z}{3}=6\Rightarrow z=18\)
Vì 2x = 3y ; 2y = 3z
=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{3}=\frac{z}{2}\)
=> \(\frac{x}{9}=\frac{y}{6};\frac{y}{6}=\frac{z}{4}\)
=> \(\frac{x}{9}=\frac{y}{6}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau .
\(\frac{x}{9}=\frac{y}{6}=\frac{z}{4}=\frac{2x+3y-4z}{2.9+3.6-4.4}=\frac{40}{20}=2\)
Do đó :
\(\frac{x}{9}=2\)=> \(x=2.9=18\)
\(\frac{y}{6}=2\)=> \(y=2.6=12\)
\(\frac{z}{4}=2\)=> \(z=2.4=8\)
Vậy x = 18 ; y = 12 ; z = 8
Hok tốt
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
a/
\(3x=4z\Rightarrow x=\frac{4z}{3};2y-3z=4z\Rightarrow y=\frac{7z}{2}\)
\(\Rightarrow x+y-z=\frac{4z}{3}+\frac{7z}{2}-z=46\)
Giải r tìm z từ đó tìm được x và y
b/ Tương tự câu a
\(2x=3y=4z\)
\(\Rightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)
Ta có:
\(\dfrac{y}{4}=\dfrac{2y}{8}\)
\(\dfrac{z}{3}=\dfrac{3z}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{6}=\dfrac{2y}{8}=\dfrac{3z}{9}=\dfrac{x+2y-3z}{6+8-9}=\dfrac{-10}{5}=-2\)
\(\Rightarrow x=-2\cdot6=-12\)
\(y=-2\cdot4=-8\)
\(z=-2\cdot3=-6\)