Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2a}-\sqrt{18^3}+4\sqrt{\dfrac{a}{2}}=\sqrt{2}.\sqrt{a}-54\sqrt{2}+2\sqrt{2}.\sqrt{a}=3\sqrt{2}.\sqrt{a}-54\sqrt{2}\)
\(\sqrt{\dfrac{a}{1+2b+b^2}}.\sqrt{\dfrac{4a+8ab+4ab^2}{225}}=\sqrt{\dfrac{a}{\left(b+1\right)^2}}.\sqrt{\dfrac{4a\left(1+2b+b^2\right)}{225}}=\dfrac{\sqrt{a}}{\left|b+1\right|}.\dfrac{\sqrt{4a\left(b+1\right)^2}}{15}=\dfrac{\sqrt{a}}{\left|b+1\right|}.\dfrac{2\sqrt{a}\left|b+1\right|}{15}=\dfrac{2a}{15}\)
Đề sai phải là \(\sqrt{2b^2+bc+2c^2}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{5}{4}}\left(a+b\right)\)
CMTT, có: \(\sqrt{2b^2+bc+2c^2}\ge\sqrt{\frac{5}{4}}\left(b+c\right)\)
\(\sqrt{2c^2+ca+2a^2}\ge\sqrt{\frac{5}{4}}\left(c+a\right)\)
\(\Rightarrow P\ge\sqrt{5}\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\frac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi a=b=c=\(\frac{1}{9}\)
Đề thiếu nhé, a,b,c >0
Áp dụng BĐT Bunhiacopxki, ta có:
\(M^2=\left(\sqrt{2a+5\sqrt{ab}+2b}+\sqrt{2b+5\sqrt{bc}+2c}+\sqrt{2c+5\sqrt{ca}+2a}\right)^2\)
\(\le3\left[4\left(a+b+c\right)+5\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\right]\)
\(\le3\left[4\left(a+b+c\right)+5\left(a+b+c\right)\right]=81\)
\(\Rightarrow M\le9\)
\(MaxM=9\Leftrightarrow a=b=c=1\)
(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le\sqrt{\left(a+b+c\right)\left(a+b+c\right)}=a+b+c\left(Bunhiacopxki\right)\))
a/ Nếu (a + b) < 0 thì bất đẳng thức đúng
Với (a + b) \(\ge0\)thì ta có
\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)
\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
b/ Áp dụng BĐT BCS :
\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)
Áp dụng câu a/ :
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)
\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)
Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)
Cộng vế với vế:
\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{5}{4}\left(a+b\right)^2}=\frac{\sqrt{5}\left(a+b\right)}{2}\)
Tương tự:\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}\left(b+c\right)}{2}\);\(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}\left(c+a\right)}{2}\)
Cộng theo vế 3 BĐT trên ta có:\(VT\ge\frac{\sqrt{5}\left(2a+2b+2c\right)}{2}=\sqrt{5}\left(a+b+c\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D
Mấy bạn ơi , cho tớ hỏi:
Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?
Ai trả lời nhanh mình tích cho.