\(\sqrt{2a}-\sqrt{18^3}+4\sqrt{\dfrac{a}{2}}\)

\(\sqrt{\dfra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

ai gúp m vs

24 tháng 9 2018

\(\sqrt{2a}-\sqrt{18^3}+4\sqrt{\dfrac{a}{2}}=\sqrt{2}.\sqrt{a}-54\sqrt{2}+2\sqrt{2}.\sqrt{a}=3\sqrt{2}.\sqrt{a}-54\sqrt{2}\)

\(\sqrt{\dfrac{a}{1+2b+b^2}}.\sqrt{\dfrac{4a+8ab+4ab^2}{225}}=\sqrt{\dfrac{a}{\left(b+1\right)^2}}.\sqrt{\dfrac{4a\left(1+2b+b^2\right)}{225}}=\dfrac{\sqrt{a}}{\left|b+1\right|}.\dfrac{\sqrt{4a\left(b+1\right)^2}}{15}=\dfrac{\sqrt{a}}{\left|b+1\right|}.\dfrac{2\sqrt{a}\left|b+1\right|}{15}=\dfrac{2a}{15}\)

27 tháng 9 2018

a) ...= \(\dfrac{1}{4}\).\(6\sqrt{5}\) +\(2\sqrt{5}\) - \(3\sqrt{5}\) +5

= \(\dfrac{3}{2}\sqrt{5}\) -\(\sqrt{5}\) +5

=5 - \(\dfrac{1}{2}\sqrt{5}\)

d) ...= \(\sqrt{\dfrac{a}{\left(1+b\right)^2}}\) . \(\sqrt{\dfrac{4a\left(1+b\right)^2}{15^2}}\)

= \(\sqrt{\dfrac{4a^2\left(1+b\right)^2}{\left(1+b\right)^2.15^2}}\) = \(\sqrt{\dfrac{4a^2}{15^2}}\)= \(\dfrac{2a}{15}\)

1 tháng 10 2018

chỉ câu b,c luôn đi nha nha ❤

2 tháng 10 2018

ko biet

9 tháng 6 2018

d) \(\dfrac{2}{5}\sqrt{50x}-\dfrac{3}{4}\sqrt{8x}\)

\(=\dfrac{2}{5}.5\sqrt{2x}-\dfrac{3}{4}\sqrt{8x}\)

\(=\dfrac{2\sqrt{2x}}{1}-\dfrac{3\sqrt{2x}}{2}\)

\(=\dfrac{4\sqrt{2x}-3\sqrt{2x}}{2}\)

\(=\dfrac{\sqrt{2x}}{2}\)

8 tháng 6 2018

c) \(3y^2.\sqrt{\dfrac{x^4}{9y^2}}=\sqrt{\dfrac{9y^4x^4}{9y^2}}=\dfrac{\sqrt{9y^2x^4}}{\sqrt{1}}=\sqrt{\left(3yx^2\right)^2}=3yx^2\)

5 tháng 8 2017

Bài này đưa về giải hệ phương trình

\(\left\{{}\begin{matrix}a-b+4ab=1\\a^2+b^2=2\end{matrix}\right.\) với \(a,b\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+4ab=1\left(1\right)\\\left(a-b\right)^2+2ab=2\left(2\right)\end{matrix}\right.\)

Từ pt (1) suy ra \(a-b=1-4ab\Rightarrow\left(a-b\right)^2=1+16a^2b^2-8ab\)

Do đó

\(\left(2\right)\Rightarrow1+16a^2b^2-8ab+2ab=2\)

\(\Leftrightarrow16a^2b^2-6ab-1=0\)

Xem đây là pt bậc 2 với ab tìm được \(\left[{}\begin{matrix}ab=\dfrac{1}{2}\\ab=-\dfrac{1}{8}\end{matrix}\right.\)

- TH1: \(ab=\dfrac{1}{2}\Rightarrow a-b=-1\)

\(\left\{{}\begin{matrix}a-b=-1\\ab=\dfrac{1}{2}\end{matrix}\right.\) tìm được \(\left\{{}\begin{matrix}a=\dfrac{-1+\sqrt{3}}{2}\\b=\dfrac{1+\sqrt{3}}{2}\end{matrix}\right.\) (thỏa mãn a,b>0)

Từ đó tìm x

Tương tự cho TH còn lại

5 tháng 8 2017

sao lại đặt bằng x,y mà lại suy ra a,b nhỉ =))

3 tháng 7 2017

a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

b) đề sai rồi nha

c) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\dfrac{a\sqrt{a}-4\sqrt{a}+2a-8}{a-4}\)

\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)\left(a-4\right)}{a-4}=\sqrt{a}+2\)

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

18 tháng 6 2017

C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)

C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{\left(\sqrt{20}+1\right)^2}}}}{\sqrt{10}-\sqrt{2}}\)

C = \(\dfrac{2\sqrt{4-\sqrt{6+\sqrt{20}}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{4-\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{10}-\sqrt{2}}\)

C = \(\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{3-\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)}{10-2}\)

C = \(\dfrac{2\sqrt{30-10\sqrt{5}}+2\sqrt{6-2\sqrt{5}}}{8}\)

C = \(\dfrac{2\sqrt{\left(5-\sqrt{5}\right)^2}+2\sqrt{\left(\sqrt{5}-1\right)^2}}{8}\)

C = \(\dfrac{2\left(5-\sqrt{5}\right)+2\left(\sqrt{5}-1\right)}{8}\)

C = \(\dfrac{10-2\sqrt{5}+2\sqrt{5}-2}{8}\) = \(\dfrac{8}{8}\) = \(1\)

18 tháng 6 2017

D = \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

D = \(\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}\)

D = \(7-3\sqrt{5}-\left(7+3\sqrt{5}\right)\) = \(7-3\sqrt{5}-7-3\sqrt{5}\)

D = \(-6\sqrt{5}\)

A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

A = \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\) = \(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

A = \(\sqrt{\sqrt{5}-\sqrt{5}+1}\) = \(\sqrt{1}=1\)