Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5-\frac{2x}{3}=4x-\frac{1}{-5}\)
\(\frac{75-10x}{15}=\frac{60x+3}{15}\)
75 - 10x = 60x +3
72 = 70x
\(\frac{72}{70}\) = x
x =\(\frac{36}{35}\)
Vậy x = \(\frac{36}{35}\)
b) \(2x-\frac{10}{6}=\frac{-27}{5}-x\)
\(2x-\frac{5}{3}=\frac{-27}{5}-x\)
\(\frac{30x-25}{15}=\frac{-81-15}{15}\)
30x =-96+25
30x =-71
x= -71/30
Vậy x= -71/30
c) \(13x-\frac{2}{2x}+5=\frac{76}{17}\)
13x - 1/x +5 = 76/17
\(\frac{221x-17+85}{17x}=\frac{76x}{17x}\)
221x +68 = 76x
221x-76x =-68
145x =-68
x =\(\frac{-68}{145}\)
Vậy .........
\(\frac{5-2x}{3}=\frac{4x-1}{-5}\)
-5(5-2x) = 3(4x-1)
-25 + 10x = 12x - 3
10x - 12x = -3 + 25
-2x = 22
x= -11
Nhân chéo như trên rồi tự làm nha
Học tốt~
\(\dfrac{3}{x-2}=\dfrac{-2}{x-4}\left(dk:x\ne2;x\ne4\right)\)
\(\Rightarrow3\cdot\left(x-4\right)=-2\cdot\left(x-2\right)\)
\(\Rightarrow3x-12=-2x+4\)
\(\Rightarrow3x+2x=4+12\)
\(\Rightarrow5x=16\)
\(\Rightarrow x=\dfrac{16}{5}\left(tm\right)\)
\(ĐK:x\ne2;x\ne4\\ Có:\dfrac{3}{x-2}=\dfrac{-2}{x-4}\\ \Leftrightarrow3\left(x-4\right)=-2\left(x-2\right)\\ \Leftrightarrow3x-12=-2x+4\\ \Leftrightarrow3x+2x=4+12\\ \Leftrightarrow5x=16\\ \Leftrightarrow x=\dfrac{16}{5}\left(TM\right)\\ Vậy:x=\dfrac{16}{5}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(2y=3z\)
\(=>\frac{y}{3}=\frac{z}{2}\)
\(=>\frac{x}{2}=\frac{y}{3}=\frac{z}{2}\)
\(=\frac{x+y+z}{2+3+2}\)(tính chất dãy tỉ số bằng nhau)
\(=\frac{49}{7}\)
\(=7\)
\(=>x=7.2=14,y=7.3=21,z=7.2=14\)
1. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)
2. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)
\(27^x=3^{x+2}\)
=>\(\left(3^3\right)^x=3^{x+2}\)
=>\(3^{3x}=3^{x+2}\)
=>\(3x=x+2\)
=>\(x+1\)
\(27^x=3^{x+2}\)
\(3^{3x}=3^{x+2}\)
\(\Rightarrow x+2=3x\)
\(\Rightarrow2=2x\)
\(\Rightarrow x=1\)
Vậy ...