Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^3.3^5.4^4}{4^6.9^2}=\frac{2^3.3^5.2^8}{2^{12}.3^4}=\frac{2^{11}.3^5}{2^{12}.3^4}=\frac{3}{2}\)
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
3.32.33.34......3x=3190
=>3(1+2+3+...........+x)=3190
=>1+2+3+.........+x=190
=>\(\frac{x.\left(x+1\right)}{2}\)=180
=>x.(x+1)=190.2
=>x.(x+1)=380
=>x=19
\(3\cdot3^2\cdot3^3\cdot3^4\cdot....\cdot3^x=3^{190}\)
\(\Leftrightarrow3^{1+2+3+...+x}=3^{190}\)
\(\Leftrightarrow1+2+3+...+x=190\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2}=190\Leftrightarrow x\left(x+1\right)=380\)
\(\Leftrightarrow x^2+x-380=0\)
\(\Leftrightarrow x^2-19x+20x-380=0\)
\(\Leftrightarrow x\left(x-19\right)+20\left(x-19\right)=0\)
\(\Leftrightarrow\left(x-19\right)\left(x+20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-19=0\\x+20=0\end{matrix}\right.\)\(\Leftrightarrow x=19\left(x>0\right)\)
3.3^2.3^3.............3^x=3^190
3^1+2+3+4+....+x=3^190
nên 1+2+3+.........+x=190
hay (x+1).x :2 =190 nen 190.2= (x+1) . x hay 380 =19.20
vay x=19
(23 . 3)4 = (8.3)4 = 244 = 331776