Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{AE}=\dfrac{2}{3}\overrightarrow{EC}\)
=>E nằm giữa A và C và AE=2/3EC
Ta có: AE+EC=AC(E nằm giữa A và C)
=>\(AC=\dfrac{2}{3}EC+EC=\dfrac{5}{3}EC\)
=>\(\dfrac{AE}{AC}=\dfrac{\dfrac{2}{3}EC}{\dfrac{5}{3}EC}=\dfrac{2}{3}:\dfrac{5}{3}=\dfrac{2}{5}\)
=>\(AE=\dfrac{2}{5}AC\)
=>\(\overrightarrow{AE}=\dfrac{2}{5}\cdot\overrightarrow{AC}\)
\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}\)
\(=-\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC}\)
b: \(\left|\overrightarrow{IA}+\overrightarrow{IG}\right|=\left|\overrightarrow{IA}-\overrightarrow{IG}\right|\)
=>\(\left[{}\begin{matrix}\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IA}-\overrightarrow{IG}\\\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IG}-\overrightarrow{IA}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2\cdot\overrightarrow{IG}=\overrightarrow{0}\\2\cdot\overrightarrow{IA}=\overrightarrow{0}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}I\equiv G\\I\equiv A\end{matrix}\right.\)
Ta có:
\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+4\overrightarrow{MC}\)
\(=6\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}+4\overrightarrow{IC}\)
\(=6\overrightarrow{MI}+4\overrightarrow{IG}+4\overrightarrow{IC}\)
\(=6\overrightarrow{MI}\)
\(\Rightarrow M,I,N\) thẳng hàng
Ta có:
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \left( {\overrightarrow {GI} + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ} + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ} + \overrightarrow {JD} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow 2\overrightarrow {GI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ} + \left( {\overrightarrow {JC} + \overrightarrow {JD} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow 2\overrightarrow {GI} + 2\overrightarrow {GJ} = \overrightarrow 0 \Leftrightarrow 2\left( {\overrightarrow {GI} + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {GI} + \overrightarrow {GJ} = \overrightarrow 0 \Rightarrow \)G là trung điểm của đoạn thẳng IJ
Vậy I, G, J thẳng hàng
Câu 1: \(\overrightarrow{IA}+\overrightarrow{IB}=0\)
Bởi vì khi đó, IA và IB là hai vecto đối nhau
Suy ra: IA và IB là hai vecto cùng phương
mà IA và IB có điểm chung là I
nên A,I,B thẳng hàng và IA=IB
Suy ra: I là trung điểm của AB
Lời giải:
Kéo dài $MG$ cắt $AC$ tại $T$ thì $T$ là trung điểm $AC$
\(\Rightarrow \overrightarrow{TA}+\overrightarrow{TC}=\overrightarrow{0}\)
Theo giả thiết của điểm M suy ra M nằm trên đoạn $AB$ sao cho \(MA=\frac{1}{2}MB\)
Theo tính chất đường trung tuyến suy ra
\(3\overrightarrow{GM}=2\overrightarrow{TM}=(\overrightarrow{TA}+\overrightarrow{AM})+(\overrightarrow{TC}+\overrightarrow{CM})\)
\(=(\overrightarrow{TA}+\overrightarrow{TC})+\overrightarrow{AM}+\overrightarrow{CM}\)
\(=\overrightarrow{AM}+\overrightarrow{CM}=\overrightarrow{AG}+\overrightarrow{GM}+\overrightarrow{CG}+\overrightarrow{GM}\)
\(\Leftrightarrow \overrightarrow{GM}=\overrightarrow{AG}+\overrightarrow{CG}=-(\overrightarrow{GA}+\overrightarrow{GC})\)
\(\Leftrightarrow \overrightarrow{GM}+\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{GB}+\frac{2}{3}\overrightarrow{BA}+\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{GB}+\frac{2}{3}(\overrightarrow{BG}+\overrightarrow{GA})+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow \frac{1}{3}\overrightarrow{GB}+\frac{5}{3}\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow 5\overrightarrow{GA}+\overrightarrow{GB}+3\overrightarrow{GC}=\overrightarrow{0}\)
b)
\(\overrightarrow{IA}=k\overrightarrow{IB}\Leftrightarrow \overrightarrow{IA}-\overrightarrow{IB}=(k-1)\overrightarrow{IB}\)
\(\Leftrightarrow \overrightarrow{BA}=(k-1)\overrightarrow{IB}\)
Do đó : \(\overrightarrow {GI}=\overrightarrow{GB}+\overrightarrow{BI}=\overrightarrow{GB}-\overrightarrow{IB}\) \(=\overrightarrow{GB}-\frac{\overrightarrow{BA}}{k-1}\)
\(=\overrightarrow{GB}-\frac{\overrightarrow{BG}+\overrightarrow{GA}}{k-1}\)
\(=\frac{k}{k-1}\overrightarrow{GB}-\frac{1}{k-1}\overrightarrow{GA}\)
b)
Vì \(\overrightarrow{IA}=k\overrightarrow {IB}\Rightarrow I,A,B\) thẳng hàng
Mà $G$ là trọng tâm $ACM$ nên để $C,G,I$ thẳng hàng thì \(I\) là trung điểm của $AM$
Khi đó: \(\overrightarrow{IA}=\frac{1}{2}\overrightarrow{MA}=\frac{1}{6}\overrightarrow{BA}=\frac{1}{6}(\overrightarrow{BI}+\overrightarrow{IA})\)
\(\Leftrightarrow 5\overrightarrow{IA}=\overrightarrow{BI}\Leftrightarrow \overrightarrow{IA}=-\frac{1}{5}\overrightarrow{IB}\)
Vậy \(k=\frac{-1}{5}\)