Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:AM+AN=OM-OA+ON-OA=OM+ON+AC=OC+AC=3/2OC
GA+3GB+GC+OD=2GB+OD=OB+OD=0
C,
Gt ⇒ \(2\left|\overrightarrow{MC}+\overrightarrow{MA}+\overrightarrow{MB}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Do G là trọng tâm của ΔABC
⇒ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)
⇒ VT = 6MG
I là trung điểm của BC
⇒ \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\)
⇒ VP = 6MI
Khi VT = VP thì MG = MI
Vậy tập hợp các điểm M thỏa mãn ycbt là đường trung trực của đoạn thẳng IG
\(a,\) \(\overrightarrow{IA}=2\overrightarrow{IB}-4\overrightarrow{IC}\)
\(\overrightarrow{IA}=2\overrightarrow{IB}-2\overrightarrow{IC}-2\overrightarrow{IC}=2\overrightarrow{CB}-2\overrightarrow{IC}\)
\(=2\left(\overrightarrow{AB}-\overrightarrow{AC}\right)-2\left(\overrightarrow{AC}-\overrightarrow{AI}\right)\)
\(\overrightarrow{IA}=2\overrightarrow{AB}-2\overrightarrow{AC}-2\overrightarrow{AC}+2\overrightarrow{AI}\)
\(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}\)
\(b,\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(1\right)\)
\(\overrightarrow{JG}=\overrightarrow{AG}-\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AM}-\dfrac{2}{3}\overrightarrow{AB}\)\((\) \(\) \(M\) \(trung\) \(điểm\) \(BC)\)
\(\overrightarrow{JG}=\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{3}-\dfrac{2}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=-\dfrac{1}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\overrightarrow{IJ}=-4\overrightarrow{JG}\Rightarrow I,J,G\) \(thẳng\) \(hàng\)
Gọi M(x,y) là điểm cần tìm
\(\overrightarrow{MA}+\overrightarrow{MB}=(-1-2x;8-2y)\)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=(8-3x;16-3y)\)
Theo giả thiết \(3|\overrightarrow{MA}+\overrightarrow{MB}|=2|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|\), suy ra
\(3\sqrt{(-1-2x)^2+(8-2y)^2}=2\sqrt{(8-3x)^2+(16-3y)^2}\)
\(\Leftrightarrow 9(4x^2+4y^2+4x-32y+65)=4(9x^2+9y^2-48x-96y+320)\)
\(\Leftrightarrow 228x+96y-695=0\)
Vậy tập các điểm M cần tìm là đường thẳng 228x+96y-695=0
Lời giải:
Kéo dài $MG$ cắt $AC$ tại $T$ thì $T$ là trung điểm $AC$
\(\Rightarrow \overrightarrow{TA}+\overrightarrow{TC}=\overrightarrow{0}\)
Theo giả thiết của điểm M suy ra M nằm trên đoạn $AB$ sao cho \(MA=\frac{1}{2}MB\)
Theo tính chất đường trung tuyến suy ra
\(3\overrightarrow{GM}=2\overrightarrow{TM}=(\overrightarrow{TA}+\overrightarrow{AM})+(\overrightarrow{TC}+\overrightarrow{CM})\)
\(=(\overrightarrow{TA}+\overrightarrow{TC})+\overrightarrow{AM}+\overrightarrow{CM}\)
\(=\overrightarrow{AM}+\overrightarrow{CM}=\overrightarrow{AG}+\overrightarrow{GM}+\overrightarrow{CG}+\overrightarrow{GM}\)
\(\Leftrightarrow \overrightarrow{GM}=\overrightarrow{AG}+\overrightarrow{CG}=-(\overrightarrow{GA}+\overrightarrow{GC})\)
\(\Leftrightarrow \overrightarrow{GM}+\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{GB}+\frac{2}{3}\overrightarrow{BA}+\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{GB}+\frac{2}{3}(\overrightarrow{BG}+\overrightarrow{GA})+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow \frac{1}{3}\overrightarrow{GB}+\frac{5}{3}\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow 5\overrightarrow{GA}+\overrightarrow{GB}+3\overrightarrow{GC}=\overrightarrow{0}\)
b)
\(\overrightarrow{IA}=k\overrightarrow{IB}\Leftrightarrow \overrightarrow{IA}-\overrightarrow{IB}=(k-1)\overrightarrow{IB}\)
\(\Leftrightarrow \overrightarrow{BA}=(k-1)\overrightarrow{IB}\)
Do đó : \(\overrightarrow {GI}=\overrightarrow{GB}+\overrightarrow{BI}=\overrightarrow{GB}-\overrightarrow{IB}\) \(=\overrightarrow{GB}-\frac{\overrightarrow{BA}}{k-1}\)
\(=\overrightarrow{GB}-\frac{\overrightarrow{BG}+\overrightarrow{GA}}{k-1}\)
\(=\frac{k}{k-1}\overrightarrow{GB}-\frac{1}{k-1}\overrightarrow{GA}\)
b)
Vì \(\overrightarrow{IA}=k\overrightarrow {IB}\Rightarrow I,A,B\) thẳng hàng
Mà $G$ là trọng tâm $ACM$ nên để $C,G,I$ thẳng hàng thì \(I\) là trung điểm của $AM$
Khi đó: \(\overrightarrow{IA}=\frac{1}{2}\overrightarrow{MA}=\frac{1}{6}\overrightarrow{BA}=\frac{1}{6}(\overrightarrow{BI}+\overrightarrow{IA})\)
\(\Leftrightarrow 5\overrightarrow{IA}=\overrightarrow{BI}\Leftrightarrow \overrightarrow{IA}=-\frac{1}{5}\overrightarrow{IB}\)
Vậy \(k=\frac{-1}{5}\)
Ta có:
\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+4\overrightarrow{MC}\)
\(=6\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}+4\overrightarrow{IC}\)
\(=6\overrightarrow{MI}+4\overrightarrow{IG}+4\overrightarrow{IC}\)
\(=6\overrightarrow{MI}\)
\(\Rightarrow M,I,N\) thẳng hàng
a: \(\overrightarrow{AE}=\dfrac{2}{3}\overrightarrow{EC}\)
=>E nằm giữa A và C và AE=2/3EC
Ta có: AE+EC=AC(E nằm giữa A và C)
=>\(AC=\dfrac{2}{3}EC+EC=\dfrac{5}{3}EC\)
=>\(\dfrac{AE}{AC}=\dfrac{\dfrac{2}{3}EC}{\dfrac{5}{3}EC}=\dfrac{2}{3}:\dfrac{5}{3}=\dfrac{2}{5}\)
=>\(AE=\dfrac{2}{5}AC\)
=>\(\overrightarrow{AE}=\dfrac{2}{5}\cdot\overrightarrow{AC}\)
\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}\)
\(=-\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC}\)
b: \(\left|\overrightarrow{IA}+\overrightarrow{IG}\right|=\left|\overrightarrow{IA}-\overrightarrow{IG}\right|\)
=>\(\left[{}\begin{matrix}\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IA}-\overrightarrow{IG}\\\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IG}-\overrightarrow{IA}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2\cdot\overrightarrow{IG}=\overrightarrow{0}\\2\cdot\overrightarrow{IA}=\overrightarrow{0}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}I\equiv G\\I\equiv A\end{matrix}\right.\)