Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(((Làm theo hướng đó đúng rồi.. Tiếp nà )))
HFCE là hình bình hành (tự c/m)
=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)
Mà EC//AK => HF//AK
=> Δ ANK = Δ FNH (g.c.g)
=> AK=HF (2)
Từ (1) và (2) suy ra AK=EC. Mà AK//EC
=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC
=> O cũng là trung điểm của EK
=> Đpcm...
Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .
Ta có : OM , AH cùng vuông góc với EF nên OM // AH
=> M là trung điểm CH ( Vì O là trung điểm của AC )
Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .
Suy ra : HF // CE // AK
Dễ chứng minh △HNF = △KNA ( g.c.g )
Suy ra : Tứ giác AHFK là hình bình hành .
Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .
Suy ra : CKAE là hình chữ nhật .
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )
Thử nhé: Gọi O' là trung điểm của AC.
Tam giác vuông AEC và AFC có trung tuyến lần lượt là EO' và FO' nên O'E=O'F (=1/2AC).
Suy ra: O'EF là tam giác cân. Mà O'M là đường trung tuyến của tam giác O'EF.
nên O'M là đường trung trực của EF.
Vậy O và O' đều là giao điểm của đường trung trực của EF với AC nên O trùng O'. Suy ra O là trung điểm của AC.
Xét tam giác ACH có OA=OC và OM song song AH nên CM=HM.
Xét tứ giác CEHF có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên là hbh. Đến đay làm sao?
Bài 1:
a: Xét tứ giác ACBH có
F là trung điểm chung của AB và CH
nên ACBH là hình bình hành
Suy ra: AH//BC và HB//AC
=>AI//BD
Xét ΔCAB có CD/CB=CE/CA
nên DE//AB
=>DI//AB
Xét tứ giác BDIA có
BD//IA
BA//ID
Do đó: BDIA là hình bình hành
b:
Gọi K là giao của FC và DE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC và FE=1/2BC=DC
Xét tứ giác FECD có
FE//CD
FE=CD
Do đó: FECD là hình bình hành
=>K là trung điểm chung của FC và ED
=>FK=1/2FC=1/2HF
Xét ΔHED có
HK là đường trung tuyến
HF=2/3HK
Do đó: F là trọng tâm
Bài 2:
Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình
=>EF//AB//CD
Xét ΔADC có
E là trung điểmcủa AD
K là trung điểm của AC
Do dó: EK là đường trung bình
=>EK//DC
Ta có: EK//DC
EF//DC
Do đó: E,F,K thẳng hàng