Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Bạn tự vẽ hình nha )
a) Xét tứ giác AEDF có :
DE // AB
DF // AC
=> AEDF là hình bình hành ( dấu hiệu nhận biết )
Xét hình bình hành AEDF có :
AD là phân giác của góc BAC
=> EFGD là hình thoi ( dấu hiệu nhận biết )
b) XÉt tứ giác EFGD có :
FG // ED ( AF //ED )
FG = ED ( AF = ED )
=> EFGD là hình bình hành ( dấu hiệu nhận biết )
c) Nối G với I
+) XÉt tứ giác AIGD có :
F là trung điểm của AG
F là trung điểm của ID
=> AIGD là hình bình hành ( dấu hiệu nhận biết )
=> GD // IA hay GD // AK ( tính chất )
+) Xét tứ giác AKDG có :
GD // AK
AG // Dk ( AF // ED )
=> AKDG là hình bình hành ( dấu hiệu )
+) xtes hinhnf bình hành AKDG có :
AD và GK là 2 đường chéo
=> AD và GK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AD ( vì AFDE là hình thoi )
=> O là trung điểm của GK
=> ĐPCM
a: Xét tứ giác BEDF có
ED//BF
ED=BF
Do đó: BEDF là hình bình hành
Xét ΔAQD có
E là trung điểm của AD
EP//DQ
Do đó: P là trung điểm của AQ
Suy ra: AP=PQ(1)
Xét ΔCPB có
F là trung điểm của BC
FQ//PB
Do đó: Q là trung điểm của CP
Suy ra: CQ=QP(2)
Từ (1) và (2) suy ra AP=PQ=QC
a: Xét tứ giác BEDF có
BF//ED
BF=ED
Do đó: BEDF là hình bình hành
Suy ra: BE//DF
Xét ΔAQD có
E là trung điểm của AD
EP//QD
Do đó: P là trung điểm của AQ
Suy ra: AP=PQ(1)
Xét ΔCPB có
F là trung điểm của BC
FQ//BP
Do đó: Q là trung điểm của CQ
Suy ra: CQ=PQ(2)
Từ (1) và (2) suy ra AP=PQ=QC
a/ Dễ thấy ABDC là hình chữ nhật dựa theo dấu hiệu nhận biết.
b/ Dễ thấy.
c/ Ta có EA = AB ; BM = CM => AM là đường trung bình tam giác BCE => AM // CE => AECM là hình thang
d/ Chứng minh được AE = CD ; AE // CD => AECD là hình bình hành
e/ Vì AECD là hình bình hành nên AD // CF => góc CFD = góc FDA (1)
Mặt khác, AM // CE (AMCE là hình thang) mà BF vuông góc với CE => BF vuông góc AM
=> FM là đường cao của tam giác vuông FAD . Từ đó dễ dàng suy ra Góc AFB = góc FDA (2)
Từ (1) và (2) suy ra góc CFD = góc AFB mà góc CFD + góc DFB = 90 độ
=> góc AFB + góc DFB = góc AFD = 90 độ
(((Làm theo hướng đó đúng rồi.. Tiếp nà )))
HFCE là hình bình hành (tự c/m)
=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)
Mà EC//AK => HF//AK
=> Δ ANK = Δ FNH (g.c.g)
=> AK=HF (2)
Từ (1) và (2) suy ra AK=EC. Mà AK//EC
=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC
=> O cũng là trung điểm của EK
=> Đpcm...
Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .
Ta có : OM , AH cùng vuông góc với EF nên OM // AH
=> M là trung điểm CH ( Vì O là trung điểm của AC )
Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .
Suy ra : HF // CE // AK
Dễ chứng minh △HNF = △KNA ( g.c.g )
Suy ra : Tứ giác AHFK là hình bình hành .
Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .
Suy ra : CKAE là hình chữ nhật .
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )