K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2021

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

20 tháng 2 2021

Đặt\(P=\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2+}+\dfrac{1}{2}\left(ab+bc+ca\right)\) 

Bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\) \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) (1)

Chứng minh bổ đề: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\sqrt[3]{abc.\dfrac{1}{abc}}=9\left(\forall a,b,c\ge0\right)\) 

Kết hợp điều kiện đề bài ta được: \(a+b+c\ge3\)

Ta có: \(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2\sqrt{b^2}}=\dfrac{ab}{2}\) ( AM-GM cho 2 số không âm 1 và b^2 )

\(\Rightarrow\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\left(1\right)\)

Chứng minh hoàn toàn tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2}\left(2\right)\)

\(\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\left(3\right)\)

Cộng (1),(2),(3) vế theo vế thu được: \(P\ge a+b+c=3\)

Dấu "=" xảy ra tại a=b=c=1

 

20 tháng 2 2021

Cách gundefinediải của

NV
7 tháng 5 2023

Tách biểu thức như sau:

\(\left(\dfrac{a}{9}+\dfrac{b}{12}+\dfrac{c}{6}+\dfrac{8}{abc}\right)+\left(\dfrac{a}{18}+\dfrac{b}{24}+\dfrac{2}{ab}\right)+\left(\dfrac{b}{16}+\dfrac{c}{8}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{c}{6}+\dfrac{2}{ca}\right)+\left(\dfrac{13a}{18}+\dfrac{13b}{24}\right)+\left(\dfrac{13b}{48}+\dfrac{13c}{24}\right)\)

NV
7 tháng 5 2023

Đầu tiên em phải dự đoán được điểm rơi (các cặp a;b;c đẹp sao cho \(ab=12\) và \(bc=8\), có các bộ là \(\left(6;2;4\right);\left(3;4;2\right)\)

Sau đó thay 2 bộ kia vào P xem cái nào bằng \(\dfrac{121}{12}\) thì nó đúng (ở đây là 3;4;2)

Khi có điểm rơi, bây giờ chỉ cần tính toán và ghép theo AM-GM để khử tử- mẫu

Cần ghép \(\dfrac{8}{abc}+\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\) (AM-GM 4 số sẽ khử hết biến)

\(\dfrac{8}{abc}=\dfrac{8}{3.4.2}=\dfrac{1}{3}\)

Do đó \(\dfrac{3}{x}=\dfrac{4}{y}=\dfrac{2}{z}=\dfrac{1}{3}\Rightarrow x=9;y=12;z=6\)

Hay ta có bộ đầu tiên: \(\dfrac{a}{9}+\dfrac{b}{12}+\dfrac{c}{6}+\dfrac{8}{abc}\)

Tương tự cho các biến dưới mẫu còn lại, phần dư cuối cùng sẽ ghép cặp a với b (tận dụng \(ab\ge12\)) và b với c, nó sẽ tự đủ

NV
5 tháng 10 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)

\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)

8 tháng 4 2021

b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)

\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )

mà \(a^2+b^2+c^2\ge ab+bc+ac\)

\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm ) 

9 tháng 5 2021

1.

Điều kiện x \ge \dfrac14.

Phương trình tương đương với \left(\sqrt2.\sqrt{2x^2+x+1}-2\right)-\left(\sqrt{4x-1}-1\right)+2x^2+3x-2 = 0 \Leftrightarrow \dfrac{4x^2+2x-2}{\sqrt2.\sqrt{2x^2+x+1}+2} - \dfrac{4x-2}{\sqrt{4x-1}+1} + (x+2)(2x-1) = 0\\ \Leftrightarrow (2x-1)\left(\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2\right) = 0

\Leftrightarrow \left[\begin{aligned} & x =\dfrac12\\ & \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 = 0\\ \end{aligned}\right.

Với x \ge \dfrac14 ta có:

\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} > 0

- \dfrac2{\sqrt{4x-1}+1} \ge -2

x + 2 > 2.

Suy ra \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 > 0.

Vậy phương trình có nghiệm duy nhất x = \dfrac12.

2.

Đặt P = \dfrac{a^3}{b+2c} + \dfrac{b^3}{c+2a} + \dfrac{c^3}{a+2b}

Áp dụng bất đẳng thức Cauchy cho hai số dương \dfrac{9a^3}{b + 2c} và (b+2c)a ta có

\dfrac{9a^3}{b+2c} + (b+2c)a \ge 6a^2.

Tương tự \dfrac{9b^3}{c+2a} + (c+2a)b \ge 6b^2\dfrac{9c^3}{a+2b} + (a+2b)c \ge 6c^2.

Cộng các vế ta có 9P + 3(ab+bc+ca) \ge 6(a^2+b^2+c^2).

Mà a^2+b^2+c^2 \ge ab+bc+ca = 4 nên P \ge 1 (ta có đpcm).

NV
28 tháng 6 2021

Đề bài sai với \(a=b=c=2\)

28 tháng 6 2021

Có xóa luôn câu hỏi không ạ?

6 tháng 11 2022

6 tháng 11 2022