Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-4+7-10+....+31-34=(1-4)+(7-10)+....+(31-34)=-3+(-3)+.....+(-3) (có 12 số -3)
=-3.12=-36
tick nha
Bước 1: Tính số số hạng có trong dãy: (Số hạng lớn nhất của dãy - số hạng bé nhất của dãy) : khoảng cách giữa hai số hạng liên tiếp trong dãy + 1
Bước 2: Tính tổng của dãy: (Số hạng lớn nhất của dãy + số hạng bé nhất của dãy) x số số hạng có trong dãy : 2
a) 1+2+3+.....+10000
số số hạng:( 10000-1)+1= 10000
tổng các số hạng đó là: ( 10000+1)*10000:2=50005000
b) 1+3+5+....+1003
số số hạng:( 1003-1):2+1= 502
tổng các số hạng đó là: ( 1003+1)*502:2=252004
Tham khảo ở phần Câu hỏi tương tự bạn nhé :
Câu hỏi của Trịnh Thúy An - Toán lớp 5 - Học toán với OnlineMath
\(B=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(B=1\cdot\frac{1}{5}+\frac{1}{2}\cdot\frac{1}{5}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{8}\cdot\frac{1}{5}+...+\frac{1}{256}\cdot\frac{1}{5}\)
\(B=\frac{1}{5}\cdot\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\Rightarrow2A-A=2-\frac{1}{256}\)
\(A=2-\frac{1}{256}\)
Thay A vào B
có: \(B=\frac{1}{5}.\left(2-\frac{1}{256}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)
A =(1 - 2 )+ (3 - 4 )+ ..... + (2009 - 2010)
= -1 + -1 + .... + -1 Với 2010 : 2 = 1005 số -1
=> A = ( -1 ) . 1005 = - 1005
A =( 1 - 2 ) + ( 3 - 4 )+ ..... +( 2009 + 2010 )
= -1 + -1+ ....... + -1 Với 2010 : 2= 1005 số -1
\(\Rightarrow\) A = ( -1 ) .1005 = -1005
k mik nha
1.S1=1 - 2 + 3 - 4 + ... + 1997 - 1998 + 1999
= (1 - 2) + ...+(1997 - 1998) + 1999
= -1 + -1 + ...+-1 + 1999
SH:1998 : 2
= 999 . -1
= -999
TDS:-999 + 1999
= 1000
b.S2=1 - 4 + 7 - 10 + ...- 2998+3001
= (1 - 4) + (7 - 10) + ...+ (2995 - 2998) + 3001
= -3 + -3 + ...+-3 + 3001
= (2998 - 1) : 3 + 1
= 1000 . -3
= -3000 + 3001
= 1
câu b mình làm lộn :
S2=1000 : 2
= 500 . -3
=-1500 + 3001
= 1501
KẾT QUẢ RA 1501 NHA
Ta có : \(E=\frac{5^2}{8.13}+\frac{5^2}{13.18}+......+\frac{5^2}{93.98}\)
\(\Rightarrow E=5\left(\frac{5}{8.13}+\frac{5}{13.18}+......+\frac{5}{93.98}\right)\)
\(\Rightarrow E=5\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+......+\frac{1}{93}-\frac{1}{98}\right)\)
\(\Rightarrow E=5\left(\frac{1}{8}-\frac{1}{98}\right)\)
\(\Rightarrow E=5.\frac{45}{392}=\frac{225}{392}\)
17
bạn ơi đằng sau câu e còn nhân với hỗ số 3 bạn nhé giúp mình mấy câu cuối nữa nhe
125
Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)
Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)
Ta có: \(\frac{1}{31}>\frac{1}{45}\)
\(\frac{1}{32}>\frac{1}{45}\)
....................
\(\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow B>\frac{1}{45}.15\)
\(\Rightarrow B>\frac{1}{3}\)
Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{46}>\frac{1}{90}\)
\(\frac{1}{47}>\frac{1}{90}\)
.....................
\(\frac{1}{90}=\frac{1}{90}\)
\(\Rightarrow C>\frac{1}{90}.45\)
\(\Rightarrow C>\frac{1}{2}\)
\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)
Hay \(A>\frac{5}{6}\left(1\right)\)
Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)
Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)
Ta có: \(\frac{1}{31}< \frac{1}{30}\)
. ...................
\(\frac{1}{59}< \frac{1}{30}\)
\(\Rightarrow D< \frac{1}{30}.60\)
\(\Rightarrow D< \frac{1}{2}\)
Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{60}=\frac{1}{60}\)
.................
\(\frac{1}{90}< \frac{1}{60}\)
\(\Rightarrow E< \frac{1}{60}.31\)
\(\Rightarrow E< \frac{31}{60}< 1\)
\(\Rightarrow E< 1\)
\(\Rightarrow E+D< 1+\frac{1}{2}\)
Hay \(A< \frac{3}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)
\(A=\frac{1}{1.5}+\frac{1}{2.5}+\frac{1}{4.5}+...+\frac{1}{256.5}\)
\(A=\frac{1}{5}\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(5A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(\frac{5}{2}A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)
\(\Rightarrow5A-\frac{5}{2}A=1-\frac{1}{2^9}\)
\(\Rightarrow\frac{5}{2}A=1-\frac{1}{2^9}\)
\(\Rightarrow A=\frac{2}{5}\left(1-\frac{1}{2^9}\right)=\frac{2}{5}-\frac{1}{5.2^8}\)