K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2015

3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

12 tháng 9 2015

Nguyễn Đình Phương giống cn gái tek?

23 tháng 7 2016

Đặt A = 1.2+2.3+3.4+........+99.100

 => 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 99.100.(101 - 98)

 => 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101

 => 3A = 99.100.101

 => A = 99.100.101/3

  => A = 333300      

18 tháng 3 2018

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3. 

11 tháng 9 2015

cau hỏi tương tự ko có mà!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 1 2022

3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)

3C=2014.2015.2016

C=2014.2015.2016:3

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

9 tháng 8 2018

3A = 1.2.3 + 2.3.(4-1) + ... + 1001.1002.(1003-1000)

3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 1001.1002.1003 - 1000.1001.1002

3A = 1001.1002.1003

A = 335337002

Dài quá, to quá =))

Học tốt ^^

9 tháng 8 2018

A=1.2+2.3+3.4+...+1001.1002

3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ...+ 1001 . 1002 . (1003 - 1000)

3A =  1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 1001.1002.1003 - 1000 . 1001.1002

= 1001.1002.1003

= 1006011006

8 tháng 9 2018

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

NM
11 tháng 2 2021

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)

4 tháng 7 2015

gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2

a2=2.3=>3a2=2.3.3=>3a1=2.3.4-1.2.3

tương tự .....

đến an-1=(n-1)n=>3an-1=3(n-1)n =>an-1=(n-1)n(n+1)-(n-2)(n-1)n

an=n.(n+1)=>3an=3.n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)

cộng từng vế các đẳng thức ta được:

3a1+3a2+....+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+....+n(n+1)(n+2)-(n-1)n(n+1)

3(a1+a2+...+an-1+an)=n(n+1)(n+2)

3(1.2+2.3+3.4+...+n(n+1)=n(n+1)(n+2)

=>1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

4 tháng 7 2015

    đặt\(A=1.2+2.3+3.4+.......+n\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+....+n\left(n+1\right).3\)\(=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+n\left(n-1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+....+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)