Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\left(1-\dfrac{1}{10}\right)\)
\(=\left(\dfrac{10}{10}-\dfrac{1}{10}\right)\)
\(=\dfrac{9}{10}\)
Chúc bạn học tốt
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
\(B=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{9\times10}\)
\(B=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B=\dfrac{1}{1}-\dfrac{1}{10}\)
\(B=\dfrac{9}{10}\)
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... 1/9.10
= 1 - 1/10
= 9/10
Bạn xem lại chỗ 1/10
A = 1/1.2 + 1/2.3 + 1/3.4 + ....+1/9.10
A = 1-1/2 + 1/2 - 1/3 + 1/3 -...-1/10
A = 1 - 1/10
A = 9/10
=1/1.2+1/2.3+1/3.4+................1/9.10
=1-1/2-1/2-1/3+...................+1/9-1/10
=1-1/10
=9/10
\(p=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+......+\(\frac{1}{9.10}\)
A=\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+........+\(\frac{1}{9}\)-\(\frac{1}{10}\)
A=1-\(\frac{1}{10}\)=9/10
A = \(3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{90}\)
A = \(\frac{1}{3}-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{90}\)
A = \(\frac{1}{3}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{5}-...-\frac{1}{90}\)
A = \(\frac{1}{3}-\frac{1}{90}\)
A = \(\frac{29}{90}\)