Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... 1/9.10
= 1 - 1/10
= 9/10
Bạn xem lại chỗ 1/10
A = 1/1.2 + 1/2.3 + 1/3.4 + ....+1/9.10
A = 1-1/2 + 1/2 - 1/3 + 1/3 -...-1/10
A = 1 - 1/10
A = 9/10
=1/1.2+1/2.3+1/3.4+................1/9.10
=1-1/2-1/2-1/3+...................+1/9-1/10
=1-1/10
=9/10
\(p=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Bài 1:
a) A=1+22+24+.................+2100
2A=(1+22+24+.................+2100)
2A=2+23+...+2101
2A-A=(2+23+...+2101)-(1+22+24+.................+2100)
A=2101-1
b)bạn tự làm
c) C=-1/90-1/72-1/50-1/42-1/30-1/20-1/12-1/6-1/2
\(=-\left(\frac{1}{90}+\frac{1}{72}+...+\frac{1}{2}\right)\)
\(=-\left(\frac{1}{10.9}+\frac{1}{9.8}+...+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+...+\frac{1}{2}-1\right)\)
\(=-\left(\frac{1}{10}-1\right)\)
\(=-\left(-\frac{9}{10}\right)=\frac{9}{10}\)
Bài 2:
cứ tính lần lượt là ra
a, \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(\Rightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{100}\)
\(\Rightarrow\dfrac{99}{100}\)
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\left(1-\dfrac{1}{10}\right)\)
\(=\left(\dfrac{10}{10}-\dfrac{1}{10}\right)\)
\(=\dfrac{9}{10}\)
Chúc bạn học tốt
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
\(B=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{9\times10}\)
\(B=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(B=\dfrac{1}{1}-\dfrac{1}{10}\)
\(B=\dfrac{9}{10}\)